Код документа: RU2117012C1
Изобретение относится к химии, конкретно к комплексным металлоорганическим каталитическим системам (катализаторам) для олигомеризации этилена в высшие линейные альфа-олефины (ЛАО).
Продукты олигомеризации этилена - ЛАО C4-C30 используются в качестве исходного сырья при получении бытовых моющих препаратов, флотореагентов, эмульгаторов, компонентов смазочно-охлаждающих и бурильных жидкостей, пластификаторов, различных типов присадок, синтетических низкозастывающих масел, полимеров и сополимеров, мономеров, депрессоров нефтей и нефтепродуктов, высших алкиламинов, высших алюминийорганических соединений, высших алкилароматических углеводородов, высших жирных спиртов и карбоновых кислот, альфа-окисей олефинов, теплоносителей, а также при получении компонентов различных композиций на основе ЛАО C20-C30: мастик, герметиков, покрытий.
Изобретение может найти применение в химической и нефтехимической промышленности на заводах по производству ЛАО с применением комплексных металлоорганических катализаторов.
Известен катализатор олигомеризации этилена в ЛАО C4-C30, который включает четыреххлористый цирконий и алюминийорганическое соединение (C2
H5)nAlCl3-n, где n - целое или дробное число из интервала значений 1 Олигомеризацию этилена на
известном
катализаторе осуществляют в среде углеводородных растворителей при температурах 100-150oC и повышенных давлениях 4-8 МПа. Главными недостатками известного катализатора являются
плохая
растворимость ZrCl4 в углеводородных растворителях, жесткие условия функционирования катализатора и относительно низкая его селективность. В ходе олигомеризации этилена наряду с ЛАО
под
действием этого катализатора образуется большое количество воскообразного и до 3,0 мас.% высокомолекулярного полиэтилена. Известен также усовершенствованный вариант этого
катализатора,
который включает циркониевую соль карбоновой кислоты общей формулы (RCOO)mZrCl4-m и алюминийорганическое соединение (C2H5)n
AlCl3-n,
где m и n - целые или дробные числа из интервала значений 1≤m≤4, 1≤n≤2, а R - линейная или разветвленная алкильная (алифатическая) группа, содержащая
от 3 до 16 атомов
углерода [SU 1042701, 23.09.83). Циркониевые соли карбоновых кислот (RCOO)mZrCl4-m хорошо растворимы в среде углеводородных растворителей.
Олигомеризацию этилена в ЛАО на этой каталитической системе проводят в среде толуола при температурах 60-80oC и давлениях этилена 2-4 МПа. Концентрацию указанного соединения
циркония в
толуоле в реакторе олигомеризации этилена изменяют в пределах от 0,5 до 1,56 ммоль/л. Мольное соотношение Al/Zr в каталитической системе варьируют от 10 до 50. Этилен и
толуол перед
олигомеризацией этилена на известной каталитической системе необходимо подвергать глубокой очистке и осушке. Попадание в реактор в процессе олигомеризации этилена следов воды вместе с
этиленом или
толуолом приводит к алкилированию толуола и к снижению селективности каталитической системы по ЛАО. Основным недостатком известной каталитической системы (RCOO)mZrCl4-n + (C2H5)nAlCl3-n является то, что она, также как и другие известные каталитические системы, в процессе олигомеризации этилена
приводит к
образованию не только ЛАО C4-C30, но и высокомолекулярного волокнообразного полиэтилена. Содержание (доля) полиэтилена в продуктах превращения этилена под действием
рассматриваемой каталитической системы зависит от мольного соотношения ее компонентов, от условий олигомеризации и может изменяться от 0,01 до 1,5 мас. % в расчете на превращенный в продукты этилен.
Образование ЛАО и высокомолекулярного полиэтилена в процессе олигомеризации этилена на упомянутых каталитических системах свидетельствует о том, что все они являются бицентровыми, т. е. содержат по
два одинаковых по природе кинетически не идентичных активных центра. На одном из них образуются ЛАО, а на другом - полиэтилен. Образование полиэтилена в процессе олигомеризации
этилена
в ЛАО на известной каталитической системе снижает ее селективность и приводит к усложнению технологического оформления процесса олигомеризации. Другим недостатком известной
каталитической системы является относительно низкая ее производительность в процессе олигомеризации. Это обуславливает высокий расход дорогостоящего карбоксилата циркония (более 0,1 г циркония на 1
кг
полученных ЛАО). Наиболее близкой к изобретению по технической сущности и достигаемому эффекту является каталитическая система для олигомеризации этилена в ЛАО C4-C30, которая включает четыреххлористый цирконий, алюминийорганическое соединение (C2H5)nAlCl3-n и основание Льюиса [US 4855525, 08.08.89). В качестве основания Льюиса используют сложные эфиры RCOOR' при мольном соотношении RCCOR'/ZrCl4= 2, где R - R' - алкил, арил, аралкил или алкарил C1-C30. Сложные эфиры способствуют растворению четыреххлористого циркония в среде углеводородных растворителей. Олигомеризацию этилена на этой каталитической системе осуществляют
при температурах 80-120oC и давлениях 4-8 МПа. Под действием этого катализатора в процессе олигомеризации этилена в ЛАО также образуется высокомолекулярный полиэтилен.
Главными недостатками этого катализатора являются жесткие условия его функционирования и полимерообразование. Задачей настоящего изобретения являлось создание каталитической системы,
применение которой в качестве катализатора олигомеризации этилена в ЛАО позволило бы полностью устранить полимерообразование и одновременно привело бы к снижению удельного расхода карбоксилата
циркония (расхода циркония в расчете на 1 кг полученных ЛАО). Поставленная задача достигается тем, что олигомеризацию этилена в ЛАО C4-C30 предложено проводить
на
четырехкомпонентной каталитической системе, которая включает соединение циркония, смесь двух соединений алюминия и основание Льюиса. В качестве соединения циркония созданная
каталитическая система содержит карбоксилат циркония общей формулы (RCOO)mZrCl4-m, где R - ненасыщенный или ароматический углеводородный радикал, в котором кратная связь или
ароматический фрагмент сопряжены с COO-группой, а m - целое или дробное число, выбранное из интервала 1 ≤m≤4. Конкретно R представляет собой винильную (CH2= CH-),
2-пропенильную (CH2≡C-CH3), ацетиленильную (CH≡C-), фенильную, толильную, нефтильную, циклопентадиенильную, инденильную или флюоренильную группы.
Смесь двух соединений алюминия в каталитической системе представляет собой смесь (C2H5)nAlCl3-n, где n - целое или дробное число, выбранное из интервала
значений 1≤n≤2, с алкилалюмоксанхлоридом общей формулы:
в котором
R
- метил, этил, пропил, бутил, изобутил, а x и y - целое или дробное число, выбранное из интервала значений 0≤x≤10, 0≤y≤10.
В действительности оба упомянутых соединения алюминия могут также представлять собой смесь двух или более соединений. Именно этому случаю соответствуют дробные значения n, x и y. В частности, соединение (C2H5 )nAlCl3-n представляет собой смеси (C2H5)2AlCl и C2H5AlCl2 с различным соотношением компонентов.
Аналогичная, но еще более сложная ситуация имеет место и в случае алкилалюмоксанхлорида. Простейший алкилалюмоксанхлорид соответствует случаю x= y= 0. Из общей формулы видно, что при таких
значениях x
и y алкилалюмоксанхлорид имеет следующее строение:
Предпочтительными являются смеси соединений алюминия при n=2 и x=y=5. Включение в каталитическую систему алкилалюмоксанхлорида обеспечивает существенное повышение ее удельной производительности.
В качестве основания Льюиса в созданную каталитическую систему входит нитроксильный радикал, а именно 2.2.6.6.-тетраметилпиперидин-1-оксил или дитретбутилнитроксил. При низких концентрациях в растворе (ниже, чем концентрация карбоксилата циркония) нитроксильный радикал селективно реагирует с активными центрами полимеризации и таким образом полностью предотвращает полимерообразование. При более высоких концентрациях нитроксильного радикала происходит взаимодействие его и с активными центрами олигомеризации этилена в ЛАО. Это приводит к снижению активности и производительности каталитической системы олигомеризации этилена в ЛАО. Именно этими факторами определяются граничные значения мольного соотношения между нитроксильным радикалом (RNO) и карбоксилатом циркония: RNO•/(RCOO)mZrCl4-m=0,01-1,0.
Такими же факторами в каталитической системе определяются граничные и оптимальные атомные соотношения Al/Zr. При атомных соотношениях Al/Zr<10 каталитическая система в процессе олигомеризации этилена в ЛАО не активна. При атомных соотношениях Al/Zr>1000 из-за резкого возрастания скорости передачи цепи на алюминийорганическое соединение вместо протекания олигомеризации этилена в ЛАО происходит каталитическая теломеризация этилена алкилалюминийхлоридами с образованием высших алкилалюминийорганических соединений. Предпочтительными являются атомные соотношения Al/Zr в катализаторе, равные 20-500.
Оптимальные результаты по активности, производительности и селективности разработанной каталитической системы получены при концентрации карбоксилата циркония 0,005-0,25 г/л (0, 01 - 0,5 ммоль/л) при температурах 60-80oC и давлении этилена 2 МПа.
Выход ЛАО в указанных условиях достигает 1000 кг/г циркония в каталитической системе за 90 мин, а расход циркония снижается до 0,6=2,5 г/т ЛАО. Полиэтилен в оптимальных условиях олигомеризации вообще не образуется. Обусловлено это, видимо, тем, что восстановительные процессы, приводящие к образованию активных центров полимеризации в разработанной каталитической системе, протекают с низкой скоростью.
Повышение удельной активности и производительности разработанной каталитической системы, как и в случае высокоэффективных металлоценовых катализаторов полимеризации олефинов, достигается благодаря тому, что входящий в ее состав алкилалюмоксанхлорид выполняет функции олигомерного носителя активных центров олигомеризации этилена. Повышению удельной активности и производительности благоприятствует также повышение общей концентрации алюминийорганических соединений в растворе.
Побочные процессы алкилирования толуола, изомеризации ЛАО; катионной димеризации этилена, олигомеризации и соолигомеризации ЛАО в ходе олигомеризации этилена на разработанной каталитической системе практически не имеют места. Этому благоприятствует то, что разработанная каталитическая система не содержит сильных кислот Льюиса. Благодаря этому селективность каталитической системы и процесса олигомеризации по ЛАО в оптимальных условиях олигомеризации превышает 98 мас.%.
Продукты олигомеризации этилена представляют собой смесь гомологов олефинов C4-C30 с четным числом атомов углерода в молекуле. Варьирование состава каталитической системы и условий олигомеризации позволяет в широких пределах регулировать характеристики молекулярно-массового распределения и фракционный состав получаемых продуктов.
Олигомеризацию этилена в ЛАО осуществляют в термостатированном реакторе из нержавеющей стали 1X18H9T при интенсивном перемешивании реакционной массы с помощью экранированного электродвигателя и мешалки лопастного типа (~1500 об/мин). Перед началом опыта очищенный реактор сушат при 80oC в вакууме (~ 10-3 мм рт.ст.), а затем заполняют и продувают этиленом. Этилен и растворитель перед олигомеризацией подвергают глубокой очистке и осушке. Компоненты каталитической системы растворяются в применяемом углеводородном растворителе в специальных стеклянных сосудах-мерниках и смешиваются между собой непосредственно в реакторе олигомеризации.
В начале в охлажденный до 20-30oC через рубашку реактор в атмосфере этилена загружают растворитель, с помощью термостата устанавливают заданную температуру, вводят в реактор этилен при перемешивании растворителя до достижения заданного давления и после этого с помощью шприца-дозатора последовательно вводят в реактор растворы двух алюминийорганических соединений, а затем - смесь растворов карбоксилата циркония и нитроксильного радикала в применяемом растворителе. Момент ввода в реактор раствора карбоксилата циркония принимают за начало олигомеризации.
Процесс олигомеризации осуществляют при постоянном давлении, что достигают путем непрерывной подачи этилена в реактор по мере расходования его в ходе олигомеризации. Реакцию олигомеризации прерывают введением в реактор 20 мл пятипроцентного раствора NaOH при интенсивном перемешивании. После этого хроматографическим методом производят анализ газовой фазы с целью определения состава и количества бутена-1, понижают давление до 0,1 МПа, продукты реакции выгружают из реактора и исследуют их методами дистилляции, газожидкостной хроматографии и инфракрасной спектроскопии. Характеристики молекулярно-массового распределения и фракционный состав синтезированных ЛАО количественно определяют хроматографическим методом на приборе ЛХМ 8-МД с ионизационно-пламенным детектором в режиме программирования температуры от 20 до 320oC с использованием полутораметровой колонки, заполненной силанизированным хроматоном NOW (0,25-0,40 мм) с 15% апиезона L.
Синтез карбоксилатов циркония и алкилалюмоксанхлоридов, а также последующую их очистку производят известными методами.
Составы разработанных каталитических систем, условия их применения в
процессе олигомеризации, а также их производительность, селективность и основные характеристики получаемых ЛАО демонстрируются, но не исчерпываются следующими примерами:
Пример 1
(контрольный). В реактор загружают 0,4 л толуола, устанавливают температуру 80oC, насыщают толуол этиленом при давлении 2,0 МПа, а затем вводят в реактор в 20 мл толуола 0,14 г циркониевой
соли изомасляной кислоты и 0,675 г сесквиэтилалюминийхлорида (Al/Zr=17,3). Длительность олигомеризации 60 мин. В процессе олигомеризации образуется 661,8 г ЛАО и 0,2 г (0,03 мас. %) полиэтилена.
Средняя скорость олигомеризации 30,1 г/л•мин. Выход ЛАО 4,73 кг на 1 г карбоксилата циркония, что соответствует выходу 22,3 кг ЛАО на 1 г циркония. Расход циркония 0,045 г/кг ЛАО.
Эффективность
каталитической системы 17700 моль ЛАО на 1 моль карбоксилата циркония. Селективность по различным типам олефинов, %: CH2=CH - 98; транс-CH=CH - 1,0; CH2=C - 1,0.
Фракционный
состав ЛАО, мас.%: (C4-C8) 45,8; (C10-C20) 45,5; (C22-C30) 8,7; Mn - 114,4; Mw 159,4; Mw
/Mn
=1,393.
Пример 2. В реактор загружают 0,4 л толуола, устанавливают температуру 80oC, насыщают толуол этиленом при давлении 2,0 МПа, а затем вводят в реактор в 20 мл толуола 0,04 г (0,1055 ммоль) циркониевой соли акриловой кислоты (m= 4), 0,42 г (3,485 ммоль) диэтилалюминийхлорида (n=2) в 10 мл толуола, 0,735 г (3,419 ммоль) этилалюмоксанхлорида с x=y=0 в 20 мл толуола и 1,646 мг (0,01055 ммоль) 2.2.6.6-тетраметилпиперидин-1-оксила в 10 мл толуола. Al/Zr= 97,85; N/Zr=0,1. Длительность олигомеризации 60 мин. В процессе олигомеризации образуется 426,4 г ЛАО. Полиэтилен не образуется. Средняя скорость олигомеризации 15,45 г/л•мин. Выход ЛАО 10,66 кг/г карбоксилата циркония или 44,42 кг в расчете на 1 г циркония в каталитической системе. Расход циркония 0,022 г/кг ЛАО.
Характеристики ММР ЛАО: Mn=108 г/моль; Mw=141,5 г/моль, γ = 1,31.
Эффективность каталитической системы 37420 моль ЛАО на моль карбоксилата циркония.
Селективность по различным типам олефинов, %: CH2=CH - 98,5; транс-CH=CH - 0,5; CH2=
Фракционный состав ЛАО, мас.%: (C4-C8) 52,0; (C10-C20) 45,9; (C22-C30) 2,1.
Пример 3. В реактор загрузили 0,4 л толуола и каталитическую систему, включающую 0,056 г (0,1687 ммоль) диметакрилатцирконийдихлорида (m=2) в 20 мл толуола, 0,65 г (5, 25 ммоль) сесквиэтилалюминийхлорида (n=1,5) в 10 мл толуола, 1,14 г (1,219 ммоль) этилалюмоксанхлорида с x=y=5 (молекулярная масса 935,5 г/моль) в 20 мл толуола и 2,07 мг (0,01327 ммоль) 2.2.6.6-тетраметилпиперидин-1-оксила в 10 мл толуола. Al/Zr=1178; N/Zr=0,079.
Олигомеризацию осуществляют в тех же условиях, что и в примере 1. Длительность олигомеризации 60 мин. Получено 362,1 г ЛАО. Полиэтилен в продуктах реакции отсутствовал. Выход ЛАО 6,5 кг/г карбоксилата циркония или 23,7 кг ЛАО/г циркония в катализаторе. Расход циркония 0,042 г/кг ЛАО. Характеристики молекулярно-массового распределения ЛАО: Mn=96,3; Mw=119,4; γ = 1,24.
Эффективность каталитической системы 26246 моль ЛАО на моль карбоксилата циркония.
Селективность по различным типам олефинов,%: CH2=CH - 97,7; транс-CH=CH - 1,0;
Примеры 4-17. Олигомеризацию этилена в ЛАО на каталитических системах, включающих карбоксилат циркония, (C2H5)nAlCl3-n, алкилалюмоксанхлорид и нитроксильный радикал проводят так же, как и в примере 2. Природа компонентов катализатора, загрузка их в реактор, условия осуществления и показатели процесса олигомеризации этилена в ЛАО в среде толуола (0,46 л) при давлении 2,0 МПа на указанной каталитической системе, а также характеристики образующихся ЛАО и эффективность каталитических систем приведены в табл. 1-3.
Источники информации
1. Патент США 4486615. Chem.
Abstr. 1985. v. 103. 149940 p.
2. Патент США 4783573
3. Авторское свидетельство СССР 1042701 от 19.07.1978;
4. Патент США 4855525
- прототип.
Изобретение относится к разработке каталитической системы для
олигомеризации этилена в альфа-олефины и
может найти применение в химической и нефтехимической промышленности. Разработана каталитическая система для олигомеризации этилена в линейные альфа-олефины
(ЛАО), включающая карбоксилат циркония
(RCOO)mZrCl4-m, смесь (C2H5)nAlCl3-n с алкилалюмоксанхлоридом общей формулы:
Включение в каталитическую систему упомянутых карбоксилатов циркония, алкилалюмоксанхлорида и стабильного нитроксильного радикала обеспечило повышение ее производительности и селективности и привело к полному исключению полимерообразования в процессе олигомеризации этилена в ЛАО. 4 з. п. ф-лы, 3 табл.