Код документа: RU2677262C1
Предлагаемое изобретение относится к термометрии и может быть использовано в качестве датчика температуры биологических и физических объектов.
Известно устройство для измерения температуры, термопреобразователь, генератор измерительных импульсов, схему сравнения импульсов, генератор счетных импульсов, генератор эталонных импульсов, счетчик с цифровым индикатором, генератор запускающих импульсов и генератор импульсов уставки (Патент США №3768310, кл. 73-362А, опубл. 1973).
Недостатком этого устройства является сравнительно низкая точность работы.
Известен также цифровой измеритель температуры (Авт. свид. SV№1835056 A3 G01K 7/00) содержащий датчик температуры, преобразователь температура-частота, счетчик, цифровой индикатор, генератор тактовых импульсов.
Недостатком этого измерителя является также невысокая точность работы.
Наиболее близким к предполагаемому изобретению по технической сущности является цифровой измеритель температуры (Патент РФ №2561998 С2, G01K 7/00, 2015), содержащий датчик температуры, терморезистор, цифровой индикатор, мостовая измерительная схема, в плечи которой включены датчик температуры и терморезистор, охваченная петлей отрицательной обработки связи, своим входом связанной с измерительной диагональю моста, а выходом - с диагональю питания моста и состоящей из последовательно соединенных усилителя и генератора управляемой частоты, при этом вход цифрового индикатора температуры соединен с выходом генератора управляемой частоты.
Недостатком этого измерителя температуры является также сравнительно высокая погрешность, обусловленная значительной мощностью, подводимой к диагонали питания моста для разогрева терморезистора измерительным током, что приводит также к некоторому разогреву датчика температуры этим же импульсным измерительным током, а также ограниченные функциональные возможности, обусловленные односторонним изменением температуры, например, в виде ее роста.
Техническая сущность предполагаемого изобретения состоит в осуществлении непрерывно-дискретного характера обработки информации при определенной энергии импульса питания обмотки подогрева-охлаждения терморезистора косвенного подогрева-охлаждения.
Техническим результатом предполагаемого изобретения является повышение точности работы цифрового измерителя температуры и расширение его функциональных возможностей.
Технический результат достигается тем, что цифровой измеритель температуры, содержащий датчик температуры и терморезистор, включенные в мостовую измерительную схему, охваченную петлей отрицательной обратной связи, своим входом связанной с измерительной диагональю моста, состоящей из усилителя, генератора управляемой частоты, выход которого соединен с диагональю питания моста и входом цифрового индикатора, дополнительно снабжен селектируемым пиковым детектором, запоминающей емкостью, стандартизатором импульсов по длительности и амплитуде и полупроводниковой обмоткой подогрева-охлаждения терморезистора, при этом детектор своим входом подключен к выходу усилителя, а выходом - к запоминающей емкости и входу генератора управляемой частоты, соединенному своим выходом через стандартизатор импульсов с обмоткой подогрева-охлаждения терморезистора, а выход генератора также связан с цепью управления работой селектируемого пикового детектора.
На фиг. 1 представлена блок-схема устройства.
Цифровой измеритель температуры содержит мостовую измерительную схему 1, в плечи которой включены датчик температуры 2 и термочувствительный элемент терморезистора косвенного подогрева-охлаждения (ТКП) 3, измерительная диагональ, которой через последовательно соединенные усилитель 4, селектируемый пиковый детектор (СПД) 5, запоминающую емкость 6, генератор управляемой частоты (ГУЧ) двуквадрантный 7, стандартизатор импульсов по длительности и амплитуде 8 подключена к обмотке подогрева-охлаждения ТКП 3, при этом выход ГУЧ 7 соединен с входом цифрового индикатора температуры 9, диагональю питания моста и цепью управления пикового детектора 5.
Цифровой измеритель температуры работает следующим образом.
Датчик температуры 2 находится в измеряемой среде. ТКП 3 находится в термостате при постоянной температуре (например, комнатной). Постоянная времени датчика температуры 2 превышает постоянную времени терморезистора с полупроводниковой обмоткой.
В исходном состоянии мостовая схема сбалансирована при заданной температуре датчика 2. При увеличении температуры датчика 2 изменяется его сопротивление и появляется разбаланс моста, который усиливается усилителем 4 и через СПД 5 управляет частотой двуквадрантного ГУЧ 7, который своими однополярными импульсами положительной или отрицательной полярности высокой скважности управляет работой СПД 5 и осуществляет питание мостовой схемы 1, а также через стандартизатор импульсов 8 разогревает или охлаждает на основании эффекта Пельтье полупроводниковую обмотку ТКП 3 до температуры при которой сопротивление его термочувствительного элемента удовлетворяет уравнению уравновешенного моста. Частота следования импульсов ГУЧ 7 и полярность импульсов регистрируются цифровым индикатором. На запоминающей емкости 6 поддерживается напряжение с выхода усилителя 4 при открытом состоянии селектируемого пикового детектора 5. В цепь управления СПД 5 может быть введен блок задержки (на схеме условно не показан) для выделения строб-импульса.
При действии импульса с выхода двуквадрантного генератора ГУЧ 7 через открытый по цепи управления детектор СПД 5 заряжает строб-импульсом запоминающую емкость 6. Емкость управляет частотой FВЫХ двуквадрантного частотно-импульсного генератора ГУЧ 5 с характеристикой:
где K - коэффициент пропорциональности, UС - напряжение на емкости 6. Положительному напряжению Uc соответствуют импульсы положительной полярности, а отрицательному напряжению - импульсы отрицательной полярности ГУЧ.
Питание мостовой схемы однополярными положительными или отрицательными импульсами высокой скважности исключает саморазогрев измерительным током плеч моста. Питание полупроводниковой обмотки подогрева - охлаждения ТКП 3 стандартизированными импульсами по длительности и амплитуде обеспечивает строгое постоянство электрической энергии от каждого импульса. Энергия, рассеиваемая в обмотке подогрева-охлаждения ТКП 3, будет всегда прямо пропорциональна частоте ГУЧ 7, что обеспечивает высокую точность измерений температуры, а также расширение функциональных возможностей измерителя температуры при нагревании и охлаждении датчика температуры относительно температуры, при которой осуществлялась балансировка моста.
Предлагаемое изобретение относится к термометрии. Заявлен цифровой измеритель температуры, который содержит мостовую измерительную схему 1, в плечи которой включены датчик температуры 2 и термочувствительный элемент терморезистора косвенного подогрева-охлаждения (ТКП) 3, измерительная диагональ которой через последовательно соединенные усилитель 4, селектируемый пиковый детектор (СПД) 5, запоминающую емкость 6, генератор управляемой частоты (ГУЧ) 7, стандартизатор импульсов по длительности и амплитуде 8 подключена к полупроводниковой обмотке подогрева-охлаждения ТКП 3. Выход ГУЧ 7 соединен с входом цифрового индикатора температуры 9, диагональю питания моста и цепью управления пикового детектора 5. Питание мостовой схемы однополярными импульсами высокой скважности исключает саморазогрев измерительным током плеч моста. Технический результат - повышение точности работы цифрового измерителя температуры и расширение его функциональных возможностей. 1 ил.