Код документа: RU2599127C2
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к способу восстановления бензиловых спиртов, сложных эфиров, простых эфиров и олефинов до соответствующего углеводорода.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Восстановление спиртов до соответствующего углеводорода обычно выполняют в два последовательных этапа. Сначала гидроксил реагирует с образованием сульфоната, галогенида или эпоксида, и затем данные производные вступают в реакцию с восстанавливающим средством (S. Hanessian, 1996). Альтернативные стратегии включают радикальное восстановление гидроксильной группы при взаимодействии с серой по Бартону-МакКомби (S.Z. Zard, 1997). Восстановления типа Вольфа-Кижнера или Клемменсена дают соответствующие углеводороды путем окисления спирта до кетона (D. Todd, 1948, Е.L. Martin, 1942). Недостатками всех данных методик является то, что они представляют собой двухэтапные способы, и тот факт, что в них применяют стехиометрическое количество реагентов.
Формальное каталитическое восстановление спиртов до их соответствующих алканов представляет собой редкое превращение в органической химии. Как сообщалось, большинство исследований, в которых применяли переходные металлы, были основаны не только на палладии (Н. van Bekkum, 1971, 2007), но также на рутении (М. Schlaf, 2005) и родии (R. Prins, 2000). Традиционно, газообразный водород применяли в каталитическом гидрировании для получения алкана и воды в качестве побочного продукта.
Формальное восстановление спиртов до соответствующего углеводорода можно также выполнять с помощью методики отщепления-восстановления (G.W. Huber, 2004, J.A. Dumesic, 2006, 2007, 2008, 2009) при высоких температурах реакции и давлении.
В последнее время применяют муравьиную кислоту в качестве источника водорода, а реакция называется каталитическое гидрирование с переносом водорода (Н. Chen, 2009, G. Lu, 2006). Применение муравьиной кислоты в качестве источника водорода обладает многими преимуществами в отношении обработки, транспортировки и хранения, и ее легко можно получить из газообразного водорода и углекислого газа (Р.G. Jessop, 2004). Кроме того, муравьиная кислота не является взрывчатой и не является вредной по сравнению с метанолом. Поскольку полученный углекислый газ может быть переработан в муравьиную кислоту при помощи добавления газообразного водорода, реакция является атомно эффективной, где образуется только вода в качестве побочного продукта в суммарной реакции. Проблема, связанная с указанными процедурами, в которых муравьиную кислоту применяли в качестве восстановителя при гидрировании спиртов с переносом водорода, заключается в конкурентной реакции диспропорционирования, которая ограничивает эффективность способа. Собственно, обнаружили, что описанное гидрирование с переносом водорода фактически представляет собой последовательный процесс диспропорционирования и трансферной гидрогенизации, в котором кетон, образованный в результате диспропорционирования, постоянно восстанавливается трансферной гидрогенизацией с преобразованием спирта. Иначе говоря, спирт более предпочтителен в качестве донора водорода, чем муравьиная кислота. А именно, за быстрой реакцией получения 50% углеводорода следует более медленный процесс, в котором муравьиная кислота восстанавливает кетон до спирта в трансферной гидрогенизации с последующим гидрированием с переносом водорода (фигура 1).
Краткое описание
Объектом настоящего изобретения является обеспечение пути осуществления гидрирования с переносом водорода первичных, вторичных и третичных спиртов, в котором подавляется конкурентное диспропорционирование. По сведениям авторов настоящего изобретения, об этом никогда еще не сообщалось.
Настоящее изобретение без ограничения может применяться в любом применении относительно восстановления бензиловых или аллиловых спиртов, сложных эфиров, карбонилов или простых эфиров и также восстановления и деполимеризации материала, состоящего из бензиловых или аллиловых спиртов, сложных эфиров, карбонилов или простых эфиров. Настоящее изобретение можно применять в широком спектре применений в диапазоне от деполимеризации лигнина с образованием углеводородных мономеров, которые можно применять в качестве химически чистого исходного сырья или топливных присадок в ходе способов дезоксигенирования указанных функциональных групп в синтезе любого химического соединения, включая без ограничения предшественники или активный фармацевтический ингредиент, душистые вещества или пластификаторы.
Один аспект настоящего изобретения относится к способу восстановления связи C-O до соответствующей связи C-Н в субстрате при помощи донора водорода, металлического катализатора и основания в растворяющей смеси, содержащей по меньшей мере два растворителя, где одним является вода.
Другой аспект относится к способу восстановления связи C-O до соответствующей связи C-Н в субстрате при помощи донора водорода, металлического катализатора в растворяющей смеси, содержащей по меньшей мере два растворителя, где одним является вода, и атмосферы, содержащей углекислый газ.
Предпочтительные варианты осуществления вышеупомянутых аспектов описаны ниже, все нижеизложенные варианты осуществления должны пониматься, как относящиеся к обоим аспектам, описанным выше.
В одном варианте осуществления донором водорода является муравьиная кислота или газообразный водород.
В другом варианте осуществления один растворитель является полярным, неполярным, протонным или апротонным растворителем.
В другом варианте осуществления один растворитель выбирают среди метанола, этанола, бензола, THF или толуола.
В другом варианте осуществления растворяющая смесь содержит этанол и воду.
В другом варианте осуществления растворяющая смесь содержит метанол и воду.
В другой варианте осуществления растворяющая смесь содержит бензол и воду.
В другом варианте осуществления основанием является неорганическое основание или органическое основание.
В другом варианте осуществления донором водорода является муравьиная кислота или газообразный водород.
В другом варианте осуществления донором водорода не является газообразный водород.
В другом варианте осуществления количество основания является нестехиометрическим по отношению к количеству субстрата.
В другом варианте осуществления количество основания является нестехиометрическим по отношению к количеству субстрата, за исключением случаев, когда субстратом является простой эфир, содержащий эфирный фрагмент либо в альфа-положении по отношению к карбонилу, либо в бета-положении по отношению к спиртовой группе.
В другом варианте осуществления реакцию проводят при температуре по меньшей мере 40°C, предпочтительно 70-100°C.
В другом варианте осуществления катализатором является катализатор на основе переходного металла, предпочтительно на основе палладия.
В другом варианте осуществления субстратом является бензиловый спирт, сложный эфир или простой эфир.
В другом варианте осуществления бензиловый спирт является либо первичным, вторичным, либо третичным спиртом.
В другом варианте осуществления фенильная группа бензилового спирта замещена либо в орто-, мета-, либо пара-положении.
В другом варианте осуществления субстратом является олефин.
В другой варианте осуществления субстратом является полимер.
В другом варианте осуществления субстратом является биополимер.
В другом варианте осуществления субстратом является лигнин.
В другом варианте осуществления субстратом является лигносульфонат.
В другом варианте осуществления реакцию проводят при избыточном давлении углекислого газа.
В другом варианте осуществления реакцию проводят с использованием палладия на угле.
Настоящее изобретение можно применять для деполимеризации материала с функциональной группой/функциональными группами бензилового спирта, простого эфира и сложного эфира в больших молекулах.
Настоящее изобретение можно применять для деполимеризации материала с функциональной группой/функциональными группами бензилового спирта, простого эфира, олефина и сложного эфира в лигнине.
Настоящее изобретение можно применять для восстановления оксида графена до графена.
Настоящее изобретение можно применять для деполимеризации и восстановления ди- или полимера углевода.
Настоящее изобретение можно применять для восстановления бензиловых спиртов с получением соответствующего углеводорода с выходом от хорошего до превосходного.
В другом варианте осуществления применяют растворяющую смесь, состоящую из любого растворителя (протонного, апротонного, полярного или неполярного) и воды в пропорции от 1:1 до 10:1.
В другом варианте осуществления применяют катализатор в количестве 0,1-10 мол. %.
В другом варианте осуществления применяют муравьиную кислоту в количестве 1-5 эквивалентов по отношению к спирту.
В другом варианте осуществления перед реакцией с субстратом палладий на угле подвергают воздействию основания (органического, неорганического, сильного или слабого).
В другом варианте осуществления газообразный водород применяют в чистом виде или в сочетании с муравьиной кислотой при гидрировании бензиловых спиртов.
ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Фигура 1. Способ согласно настоящему изобретению. Гидрирование с переносом водорода 1-фенилэтанола показано в виде последовательного процесса переноса водорода, в котором катализатор дегидрирует спирт до соответствующего кетона. С помощью этого процесса реакция проходит с 50% превращением в один быстрый этап. После этого имеет место первоначальное диспропорционирование, процесс переноса водорода, для преобразования спирта из кетона и муравьиной кислоты.
Фигура 2. Видимое гидрирование с переносом водорода фактически является диспропорционированием, в котором 1 эквивалент спирта дает 0,5 эквивалента углеводорода и 0,5 эквивалента кетона. Ни диспропорционирование, ни гидрирование с переносом водорода не происходят со стехиометрическим количеством основания. Применение каталитического количества основания дает эффективное гидрирование с переносом водорода, в котором наблюдается менее 15% кетона в течение реакции.
Фигура 3. По причине отрицательного заряда основания формиат конкурирует за свободный участок связывания палладия, таким образом подавляет путь прохождения реакции диспропорционирования, в котором мог участвовать спирт. С эквимолярным количеством основания не наблюдается никакой реакционности для спиртов в отличие от галогенидов и сложных эфиров, вследствие слабой способности гидроксильной группы быть уходящей группой.
Фигура 4. Ряд 1 соответствует этилбензолу, и ряд 2 соответствует ацетофенону.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В настоящем изобретении выражение ″донор водорода″ следует понимать как вещество или соединение, которое дает или переносит атом водорода на другое вещество или соединение.
Настоящее изобретение относится к способу восстановления субстрата, где указанный субстрат может быть без ограничения первичным, вторичным и третичным бензиловым или аллиловым спиртом, бензиловым или аллиловым простым эфиром, бензиловым или аллиловым карбонилом и бензиловым или аллиловым сложным эфиром или олефином до соответствующего углеводорода. Предпочтительно, субстратом является вторичный или третичный спирт, кроме аллиловых спиртов, являющихся более предпочтительными, чем первичные.
Общий способ включает добавление катализатора в реакционную колбу или лабораторный стакан. Добавляют растворяющую смесь по меньшей мере из двух растворителей, где один из растворителей является водой и основанием. Смесь затем нагревают с последующим добавлением донора водорода и субстрата, который необходимо восстановить. Реакцию затем останавливают или гасят и полученный продукт выделяют и предпочтительно высушивают.
Фенильная группа может быть замещена в орто-, мета- или пара-положении. Реакцию выполняют при помощи катализатора на основе переходного металла (Pd, Pt, Rh, например, Pd/C или Rh/C) с получением углеводорода с выходами от хорошего (выход 45-65%) до превосходного (выход 65-100%) только с водой в качестве побочного продукта. Выход восстановленного продукта согласно настоящему изобретению часто составляет более 90% и часто 100%. Количество катализатора может быть от 0,5 до 20 мол. %, как, например, 0,5 мол. % или больше, или 1 мол. % или больше, или 2 мол. % или больше, или 4 мол. % или больше, или 5 мол. % или больше, или 8 мол. % или больше, или 20 мол. % или меньше, или 15 мол. % или меньше, или 12 мол. % или меньше, или 10 мол. % или меньше.
Реакции можно выполнять при мягких условиях реакции (40-100°С) традиционным нагреванием или нагреванием в микроволновой печи, но также можно выполнять при более высоких температурах реакции. Реакции выполняют в растворяющей смеси, содержащей по меньшей мере два растворителя. Один из этих растворителей может быть любым растворителем (например, этанолом, метанолом, пропанолом, бензолом, THF, толуолом, DMF, DMSO, этилацетатом), а другой растворитель является водой, предпочтительно в пропорции 1-10:1, например 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1 или 10:1. Предел может быть 1:1 или больше, или 2:1 или больше, или 3:1 или больше, или 4:1 или больше, или 10:1 или меньше, или 9:1 или меньше, или 8:1 или меньше, или 7:1 или меньше, или 6:1 или меньше. Предпочтительный предел составляет от 2:1 до 6:1 или от 3:1 до 5:1.
Для того чтобы подавить диспропорционирование к растворяющей смеси и катализатору перед добавлением донора водорода, как, например, муравьиной кислоты или газообразного водорода, и субстрата (смотри ниже рассмотрение с точки зрения механизма реакции в отношении основания), должны быть добавлены основание или углекислый газ. Количество донора водорода, как, например, муравьиной кислоты может быть от 1 до 5 эквивалентов, как например, 1, 2, 3, 4 и 5 эквивалентов. В одном варианте осуществления количество донора водорода составляет от 1,5 до 4,5 эквивалентов, и в другом варианте осуществления количество донора водорода составляет от 2 до 4 эквивалентов, и в еще другом варианте осуществления количество донора водорода составляет от 2,5 до 3,5 эквивалентов. В одном варианте осуществления донором водорода является негазообразный водород.
Любое основание может быть применено и может быть выбрано из, но без ограничения, формиата аммония, бикарбоната натрия и триэтиламина. Можно применять любое количество основания или давление углекислого газа. Предпочтительно добавляли основание в количестве 5 мол. % или больше, или больше 10 мол. %, или больше 20 мол. %, но не больше 50 мол. %, или меньше 40 мол. %, или меньше 30 мол. %. Однако стехиометрическое количество основания (по отношению к субстрату) подавляет всю реакционность (фигура 2), за исключением случаев, когда субстратом является простой эфир, содержащий эфирный фрагмент либо в альфа-положении по отношению к карбонилу, либо в бета-положении по отношению к спиртовой группе, затем стехиометрическое количество основания требуется для расщепления эфирной связи. В последнем случае, когда субстратом является простой эфир, субстрат может быть либо субстратом с бензиловым фрагментом, либо субстратом с аллиловым фрагментом, предпочтительно субстратом с аллиловым фрагментом.
Необходимо заметить, что диспропорционирование является возможным в отсутствие (и также присутствии) муравьиной кислоты для получения 50% превращения углеводорода. В присутствии основания данное диспропорционирование подавляется, и исходный материал восстанавливают только в том случае, если спирт применяли в качестве субстрата и не добавляли муравьиную кислоту. Если добавляли муравьиную кислоту к реакционной смеси, включая основание, получали плавное гидрирование с переносом водорода, в котором соответствующий углеводород получали с выходом 65-100%. Растворяющую смесь нагревали предпочтительно до температуры от 40°С до 100°С, в зависимости от растворителя, более предпочтительно 70-100°С, более предпочтительно от 75°С до 90°С, как, например, 75°С, 80°С, 85°С или 90°С.
В тех случаях, когда применяют атмосферу с углекислым газом, атмосфера может включать другие соединения, как, например, кислород и азот. Атмосфера может быть воздухом, содержащим углекислый газ или инертной атмосферой (как, например, аргон или газообразный азот), содержащей углекислый газ.
Ион формиата (или другое основание) может взаимодействовать с палладием. Данное взаимодействие подавляет обмен лигандами с помощью бензилового спирта и, таким образом, также путь прохождения реакции диспропорционирования (фигура 3, K2>K1). Вследствие того, что диспропорционирование не полностью подавляется, кроме тех случаев, когда применяют стехиометрические количества основания, полагают, что [Pd-OCHO]-комплекс непосредственно не распадается на Pd-H-комплекс, несмотря на неограничение скорости (с kHCOOH/kDCOOH=1,07). Pd-H- не может способствовать гидрированию с переносом водорода при отсутствии активации кислотой, поскольку это потребует того, чтобы гидроксильная группа была уходящей группой. Протон из муравьиной кислоты дает нейтральные разновидности PdH2 в ограничивающем скорость этапе (k3>k4). Это объяснит изотопный эффект дейтерия муравьиной кислоты (kHCOOH/kHCOOD=2,66). Альтернативно, муравьиная кислота протонирует гидроксильную группу бензилового спирта. Возможно осуществление комбинации двух протонирований. Это поддерживает тот факт, что Pd-катализируемое диспропорционирование само по себе облегчается муравьиной кислотой. Примечательно, что гидрогенированию с переносом водорода и бензиловых сложных эфиров,, и галогенидов содействуют при помощи солей формиата. Большая способность быть уходящей группой для этих субстратов не будет требовать предварительного протонирования, как в случае бензиловых спиртов.
Следующие субстраты являются неограничивающими примерами субстратов, которые могут быть восстановлены способом согласно настоящему изобретению, 1-фенилэтанол, 2-фенил-2-пропан-2-ол, бензиловый спирт, 1-метокси-1-фенилэтан, 1-(фенилэтил) формиат, стирол, 4-фенил-3-бутен-2-ол, фенилметансульфоновая кислота, 3-(4-(2-(4-гидрокси-3-метоксифенил)-2-оксоэтокси)фенил)акролеин, этил-3-(4-(2-(4-гидрокси-3-метоксифенил)-2-оксоэтокси)фенил)акрилат, 2-фенокси-1-фенилэтанон и 1,4-бис(бензо[d][1,3]диоксол-5-ил)гексагидрофуро[3,4-с]фуран.
ПРИМЕРЫ
Пример 1. Гидрирование с переносом водорода 1-фенилэтанола.
Pd/C (5 мол. %, 42 мг, 0,021 ммоль) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола (2,4 мл) и воды (0,6 мл), и формиат аммония (6 мг, 0,095 ммоль, 30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли с помощью шприца муравьиную кислоту (50 мкл, 1,05 ммоль, 3 эквивалента) и затем 1-фенилэтанол (50 мкл, 0,42 ммоль). Реакция проходила в течение 10-40 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный этилбензол анализировали с помощью1H ЯМР и получали выход 100%.
Пример 2. Гидрирование с переносом водорода 1-фенилэтанола.
Pd/C (5 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из бензола и воды (4:1), и формиат аммония (30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли с помощью шприца муравьиную кислоту (3 эквивалента) и затем 1-фенилэтанол. Реакция проходила в течение 10-40 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный этилбензол анализировали с помощью1H ЯМР и получали выход 100%.
Пример 3. Гидрирование с переносом водорода 1-фенилэтанола
Pd/C (5 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола и воды (4:1), и бикарбонат натрия (30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли с помощью шприца муравьиную кислоту (3 эквивалента) и затем 1-фенилэтанол. Реакция проходила в течение 10-40 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный этилбензол анализировали с помощью1H ЯМР и получали выход 100%.
Пример 4. Гидрирование с переносом водорода 1-фенилэтанола
Pd/C (5 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола и воды (4:1), реакционную колбу накрывали каучуковыми мембранами и применяли атмосферу углекислого газа. Реакционную колбу нагревали (80°C) в течение 2 минут. Добавляли с помощью шприца муравьиную кислоту (3 эквивалента) и затем 1-фенилэтанол. Реакция проходила в течение 10-40 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный этилбензол анализировали с помощью1Н ЯМР и получали выход 100%.
Пример 5. Гидрирование с переносом водорода 2-фенил-2-пропан-2-ола
Pd/C (5 мол. %, 42 мг, 0,021 ммоль) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола (2,4 мл) и воды (0,6 мл), и формиат аммония (6 мг, 0,095 ммоль, 30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли с помощью шприца муравьиную кислоту (50 мкл, 1,05 ммоль, 3 эквивалента) и затем 2-фенил-2-пропан-2-ол (58 мкл,0,42 ммоль). Реакция проходила в течение 10-40 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM и органическую фазу высушивали с помощью Na2SO4. Полученный изопропилбензол анализировали с помощью1Н ЯМР и получали выход 98%.
Пример 6. Гидрирование с переносом водорода бензилового спирта
Pd/C (5 мол. %, 42 мг, 0,021 ммоль) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола (2,4 мл) и воды (0,6 мл), и формиат аммония (6 мг, 0,095 ммоль, 30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли с помощью шприца муравьиную кислоту (50 мкл, 1,05 ммоль, 3 эквивалента) и затем бензиловый спирт (43 мкл, 0,42 ммоль). Реакция проходила в течение 10-40 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный толуол анализировали с помощью1H ЯМР и получали выход 70%.
Пример 7. Гидрирование с переносом водорода 1-фенилэтан-1,2-диола
Pd/C (5 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола и воды (4:1), и формиат аммония (30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли с помощью шприца муравьиную кислоту (3 эквивалента) и затем бензиловый спирт. Реакция проходила в течение 10-40 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный 1-фенил-2-пропанол анализировали с помощью1H ЯМР и получали выход 60%.
Пример 8. Гидрирование с переносом водорода 1-метокси-1-фенилэтана
Pd/C (5 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола и воды (4:1), и формиат аммония (30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли с помощью шприца муравьиную кислоту (3 эквивалента) и затем бензиловый спирт. Реакция проходила в течение 20 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный этилбензол анализировали с помощью1Н ЯМР и получали выход 60%.
Пример 9. Гидрирование с переносом водорода 1-(фенилэтил)-формиата
Pd/C (5 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола и воды (4:1), и формиат аммония (30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°С) в течение 2 минут. Добавляли с помощью шприца муравьиную кислоту (3 эквивалента) и затем бензиловый спирт. Реакция проходила в течение 20 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный этилбензол анализировали с помощью1H ЯМР и получали выход 20%.
Пример 10. Трансферная гидрогенизация стирола
Pd/C (5 мол. %) взвешивали в реакционную колбу. Добавляли растворяющую смесь, состоящую из этанола и воды (4:1), и формиат аммония (30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли с помощью шприца муравьиную кислоту (3 эквивалента) и затем стирол. Реакция проходила в течение 20 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный этилбензол анализировали с помощью1Н ЯМР и получали выход 100%.
Пример 11. Гидрирование фенилэтанола
Pd/C (5 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола и воды (4:1), и формиат аммония (30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Раствор барботировали газообразным водородом в течение 5 минут, и добавляли 1-фенилэтанол с помощью шприца. Реакция проходила в течение 40 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный этилбензол анализировали с помощью1H ЯМР и получали выход 100%.
Пример 12. Гидрирование с переносом водорода фенилэтанола в среде реакции гидрирования
Pd/C (5 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола и воды (4:1), и формиат аммония (30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли муравьиную кислоту (3 эквивалента), раствор барботировали газообразным водородом в течение 5 минут, и затем добавляли 1-фенилэтанол с помощью шприца. Реакция проходила в течение 40 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный этилбензол анализировали с помощью1H ЯМР и получали выход 100%.
Пример 13. Гидрирование с переносом водорода фенилэтанола
Pd/C (5 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола и воды (4:1), и NaHCO3 (30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли муравьиную кислоту (3 эквивалента), раствор барботировали газообразным водородом в течение 5 минут, и затем добавляли 1-фенилэтанол с помощью шприца. Реакция проходила в течение 40 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный этилбензол анализировали с помощью1H ЯМР и получали выход 100%.
Пример 14. Гидрирование с переносом водорода фенилэтанола
Pd/C (5 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола и воды (4:1), и триэтиламин (30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли муравьиную кислоту (3 эквивалента), раствор барботировали газообразным водородом в течение 5 минут, и затем добавляли 1-фенилэтанол с помощью шприца. Реакция проходила в течение 40 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный этилбензол анализировали с помощью1H ЯМР и получали выход 100%.
Пример 15. Влияние основания в гидрировании с переносом водорода фенилэтанола
Pd/C (5 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола и воды (4:1), и формиат аммония (0-12 эквивалентов по отношению к палладию), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли муравьиную кислоту (3 эквивалента), раствор барботировали газообразным водородом в течение 5 минут, и затем 1-фенилэтанол добавляли с помощью шприца. Реакция проходила в течение 12 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученные этилбензол и ацетофенон анализировали с помощью1H ЯМР по сравнению с внутренним стандартом (см. фигуру 1).
Пример 16. Гидрирование с переносом водорода 4-фенил-3-бутен-2-ола
Pd/C (5 мол. %) взвешивали реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола и воды (4:1), и NaHCO3 (30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли муравьиную кислоту (3 эквивалента), раствор барботировали газообразным водородом в течение 5 минут, и затем добавляли 4-фенил-3-бутен-2-ол с помощью шприца. Реакция проходила в течение 40 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный этилбензол анализировали с помощью1H ЯМР и получали выход 100%.
Пример 17. Гидрирование с переносом водорода фенилметансульфоновой кислоты
Pd/C (5 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола и воды (4:1), и формиат аммония (30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли с помощью шприца муравьиную кислоту (3 эквивалента) и затем фенилметансульфоновую кислоту (1 эквивалент). Реакция проходила в течение 10-40 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный толуол анализировали с помощью1H ЯМР и получали выход 95%.
Пример 18. Получение этилбензола из 1-фенилэтанола
Rh/C (5 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этанола и воды (4:1), и формиат аммония (30 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли с помощью шприца муравьиную кислоту (3 эквивалента) и затем 1-фенилэтанол. Реакция проходила в течение 4 часов, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Полученный этилбензол анализировали с помощью1H ЯМР и получили выход 50%.
Пример 19. Получение 1-(4-гидрокси-3-метоксифенил)этанона и 3-(4-гидроксифенил)-акролеина из 3-(4-(2-(4-гидрокси-3-метоксифенил)-2-оксоэтокси)фенил)-акролеина
Pd/C (10 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этилацетата и воды (4:1), и формиат аммония (2 эквивалента), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли субстрат 3-(4-(2-(4-гидрокси-3-метоксифенил)-2-оксоэтокси)фенил)-акролеин. Реакция проходила в течение 120 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Продукты очищали с помощью капиллярной кварцевой колонки с выходом продуктов более 90%.
Пример 20. Получение 4-этил-2-метоксифенола и 4-(3-гидроксипропил)фенола из 3-(4-(2-(4-гидрокси-3-метоксифенил)-2-оксоэтокси)фенил)-акролеина
Pd/C (10 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этилацетата и воды (4:1), и формиат аммония (2 эквивалента), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли субстрат 3-(4-(2-(4-гидрокси-3-метоксифенил)-2-оксоэтокси)фенил)-акролеин. Реакция проходила в течение 120 минут, и затем добавляли 3 эквивалента муравьиной кислоты, и реакция проходила при 80°С в течение 1 часа, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Продукты очищали с помощью капиллярной кварцевой колонки с выходом продуктов более 90%.
Пример 21. Получение этил-3-(4-гидроксифенил)пропаноата и 1-(4-гидрокси-3-метоксифенил)этанона из этил-3-(4-(2-(4-гидрокси-3-метоксифенил)-2-оксоэтокси)фенил)-акрилата
Pd/C (10 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этилацетата и воды (4:1), и формиат аммония (2 эквивалента), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°С) в течение 2 минут. Добавляли субстрат этил-3-(4-(2-(4-гидрокси-3-метоксифенил)-2-оксоэтокси)фенил)-акрилат. Реакция проходила в течение 120 минут, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Продукты очищали с помощью капиллярной кварцевой колонки с выходом продуктов более 90%.
Пример 22. Получение этил-3-(4-гидроксифенил)пропаноата и 4-(3-гидроксипропил)фенола из этил-3-(4-(2-(4-гидрокси-3-метоксифенил)-2-оксоэтокси)фенил)-акрилата
Pd/C (10 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этилацетата и воды (4:1), и формиат аммония (2 эквивалента), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли субстрат этил 3-(4-(2-(4-гидрокси-3-метоксифенил)-2-оксоэтокси)фенил)акрилат. Реакция проходила в течение 120 минут, и затем добавляли 3 эквивалента муравьиной кислоты, и реакция проходила при 80°C в течение 1 часа, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Продукты очищали с помощью капиллярной кварцевой колонки с выходом продуктов более 90%.
Пример 23. Получение фенола и этилбензола из 2-фенокси-1-фенилэтанона
Pd/C (10 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этилацетата и воды (4:1), и формиат аммония (2 эквивалента), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли субстрат 2-фенокси-1-фенилэтанон. Реакция проходила в течение 120 минут, и затем добавляли 3 эквивалента муравьиной кислоты, и реакция проходила при 80°C в течение 1 часа, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Продукты очищали с помощью капиллярной кварцевой колонки с выходом продуктов более 90%.
Пример 23. Получение 2,3-бис(бензо[d][1,3]диоксол-5-илметил)бутан-1,4-диола из 1,4-бис(бензо[d][1,3]диоксол-5-ил)гексагидрофуро[3,4-с]фурана
Pd/C (10 мол. %) взвешивали в реакционной колбе. Добавляли растворяющую смесь, состоящую из этилацетата и воды (4:1), и формиат аммония (25 мол. %), реакционную колбу накрывали каучуковыми мембранами, и смесь нагревали (80°C) в течение 2 минут. Добавляли субстрат 1,4-бис(бензо[d][1,3]диоксол-5-ил)гексагидрофуро[3,4-с]фуран. Реакция проходила с 3 эквивалентами муравьиной кислоты в течение 4 часов, и реакцию гасили соляным раствором. Продукт экстрагировали с помощью DCM, и органическую фазу высушивали с помощью Na2SO4. Продукты очищали с помощью капиллярной кварцевой колонки с выходом продуктов более 90%.
Настоящее изобретение относится к способу восстановления связи С-O до соответствующей связи С-Н в субстрате при помощи донора водорода, катализатора на основе переходного металла и основания в растворяющей смеси, содержащей по меньшей мере два растворителя. Способ характеризуется тем, что одним является вода, где соотношение по меньшей мере двух растворителей, одним из которых является вода, составляет 1-10:1 (растворитель : вода), а также тем, что количество основания является нестехиометрическим по отношению к количеству субстрата, кроме тех случаев, когда субстратом является простой эфир, содержащий эфирный фрагмент либо в альфа-положении по отношению к карбонилу, либо в бета-положении по отношению к спиртовой группе. Использование предлагаемого способа позволяет достичь высоких выходов. 9 з.п. ф-лы, 4 ил., 24 пр.