Код документа: RU2692830C1
Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и других светолокационных устройств.
Известны приемники оптических сигналов [1] для систем импульсной лазерной локации, предназначенные для преобразования в электрические сигналы отраженных удаленными объектами зондирующих импульсов лазерного излучения и временной привязки электрических импульсов для определения их задержки τ относительно момента излучения лазерного зондирующего импульса. По этой задержке судят о дальности R до отражающего объекта по формуле R = сτ/2, где с - скорость света. Подобным образом построены приемники оптических сигналов [2-3], содержащие фоточувствительный элемент и схему обработки сигнала. Указанные устройства имеют ограниченный динамический диапазон, препятствующий применению таких приемников в измерителях дальности и другой аппаратуре с повышенными требованиями к точности. Существует ряд технических решений, имеющих целью расширение динамического диапазона и повышение точности временной фиксации принятых сигналов [4-5]. Однако эти решения не обеспечивают работоспособность приемника, если энергия входного излучения превышает уровень лучевой прочности фоточувствительного элемента.
Наиболее близким по технической сущности к предлагаемому изобретению является приемник оптических сигналов, содержащий фоточувствительный элемент, схему обработки сигнала, светоделитель, фотодатчик, устройство задержки и оптический затвор, установленный перед фоточувствительным элементом [6]. В данном приемнике оптический затвор не открывается, если сигнал с фотодатчика превышает пороговое значение, соответствующее уровню входного излучения, превышающего порог лучевой прочности фоточувствительного элемента. В противном случае затвор открывается, и входное излучение поступает на фоточувствительный элемент. Время задержки сигнала в линии задержки должно превышать время реакции затвора на управляющий импульс от фотодатчика. Таким образом, обеспечивается функционирование устройства не только в рабочем динамическом диапазоне отраженных сигналов, но и за его пределами - в условиях высокоэнергетических входных сигналов.
Недостаток приемника [6] - потери излучения в светоделителе, устройстве задержки и оптическом затворе, а также ограничения по быстродействию затвора, вынуждающие увеличивать задержку сигнала в устройстве задержки. Это, в свою очередь, приводит к потерям в приемном тракте, искажению формы принимаемого сигнала, увеличению габаритов устройства, особенно за счет светоделителя, устройства задержки и оптического затвора.
Задачей изобретения является обеспечение работоспособности приемника оптических сигналов для высокоэнергетических входных сигналов и наивысшей чувствительности для слабых входных сигналов при минимальных габаритах устройства и его максимальном быстродействии и надежности.
Эта задача решается за счет того, что в известном приемнике лазерных импульсов, содержащем корпус с оптическим входом, фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом, оптический затвор выполнен в виде шторки с двумя рабочими положениями, а в состав устройства введен привод шторки, включающий укрепленную на корпусе пружину кручения, соосно связанную с коромыслом, одно из плеч которого длиной L1 притянуто к корпусу растяжкой с усилием F, определяемым заданным быстродействием привода шторки, а на свободном плече коромысла длиной L2 закреплена шторка, соотношение плеч коромысла выбрано таким образом, чтобы при изменении длины растяжки на величину Δс шторка перемещалась на заданное расстояние
В состав приемника лазерных импульсов может быть введен логический модуль, один вход которого связан с выходом схемы обработки сигнала, второй вход является управляющим входом, а выход подключен к источнику управляющего электрического сигнала.
Шторка может быть выполнена полупрозрачной с коэффициентом пропускания τ, отвечающим условию
На чертеже фиг. 1 представлена функциональная схема приемника лазерных импульсов.
Приемник лазерных импульсов (фиг. 1) состоит из фоточувствительного элемента 1 (например, фотодиода) и схемы обработки сигнала 2, включающей предусилитель 3, усилитель 4 и формирователь выходного сигнала 5, выход которого является выходом устройства. Перед фоточувствительным элементом расположена шторка 6 с приводом в виде пружины кручения 7, соосно с которой к свободному концу пружины прикреплено коромысло 9, на одном из плеч коромысла закреплена шторка 6, а второе плечо притянуто растяжкой 10 к корпусу 11 так, чтобы шторка перекрывала рабочую площадку фоточувствительного элемента. К концу растяжки, связанному с коромыслом, подключен выход источника управляющего электрического сигнала 12, вход которого подключен к выходу логического модуля 13, один из входов которого связан с выходом схемы обработки сигнала 2, а второй является его управляющим входом. Приемник лазерных импульсов размещен в герметичном корпусе 11, через оптическое окно которого принимаемое излучение поступает на фоточувствительный элемент 1.
Устройство работает следующим образом.
В исходном состоянии полупрозрачная шторка 6 находится перед рабочей площадкой фоточувствительного элемента 1, ослабляя поступающие на нее сигналы в 1/τ раз. При подаче на растяжку управляющего сигнала от формирователя 12 растяжка под действием протекающего через нее тока нагревается, и ее исходная длина увеличивается на величину Δс = αсΔТ, где α - коэффициент температурного расширения, ΔT - приращение температуры. В результате на шторку действует сила
Для перекрытия шторкой рабочей площадки фоточувствительного элемента должно выполняться условие
Коэффициент ослабления шторки τ определяется ожидаемым уровнем высокоэнергетической лазерной засветки от внешнего источника. Шторка может быть выполнена в виде прозрачной плоскопараллельной пластины с полупрозрачным покрытием, нанесенным, например, путем металлизации. Толщина этого покрытия определяет необходимую величину τ при сохранении габаритно-присоединительных параметров. Если при закрытой полупрозрачной шторке на выходе схемы обработки 2 формируется сигнал, это свидетельствует о наличии на входе фоточувствительного элемента 1 высокоэнергетического сигнала. Тогда логический модуль 13 предотвращает прохождение управляющего сигнала на формирователь 12, и шторка остается в исходном состоянии.
Предельно допустимое значение силы F определяется прочностью растяжки.
Пример 1.
Нихром Х20Н80 ГОСТ 8803-89 сплав твердый.
Предел прочности 0,77 ГПа. Принятая удельная нагрузка σпред = 0,1 ГПа.
Проволока диаметр 0,1 мм, длина 20 мм. Площадь сечения Sнихр = 0,00785 мм2 = 7,85-10-9 м2. Рабочая нагрузка F = σпред⋅ Sнихр = 0,1⋅7,85 = 0,8 Н.
При температурном расширении нихромовой нити 10 пружина 7 поворачивает коромысло 9 с моментом силы М = FL1. Тогда, если суммарная эквивалентная масса кольца и шторки равна m, ускорение шторки
Эквивалентная масса шторки включает эквивалентные по моменту инерции массы самой шторки mш, оправы m0, коромысла mk, растяжки mp и пружины mп.
Пример 2.
Пружина кручения арт. ST17310 [8] имеет следующие параметры.
Dt = 0,6 мм - диаметр проволоки; Di=2мм внутренний диаметр; nv = 2 - количество пружинящих витков; Mn = 9,3 - максимальный допустимый момент, Н⋅мм; ϕ = 32 - угол вращения в градусах при Mn; плотность 7,7 г/см3. Эквивалентная масса mп ~ 0,5⋅10-6 кг.
Растяжка - нихром, проволока∅ 0,1 мм; длина 20 мм; плотность 8 г/см3. Эквивалентная масса mp = 1,6⋅10-6 кг.
Коромысло - титан, пластина 0,2×2 мм; L1 = 5 мм; L2 = 10 мм; плотность 4,5 г/см3. Эквивалентная масса mк ~ 15⋅10-6 кг.
Шторка - 2×2×0,2, стекло К8 ГОСТ 3514-76с металлизацией; плотность 2,51 г/см3. Масса mш = 2⋅10-6 кг.
Из приведенных данных следует, что m ~ mш + mk + mп + mp ~ 20⋅10-6 кг.
Ускорение шторки
Перемещение шторки S = 0,3 мм.
Время перемещения
Рабочая температура растяжки должна существенно превышать эксплуатационный температурный диапазон, чтобы температурные условия внешней среды не оказывали заметного влияния на положение шторки. С другой стороны, температура растяжки не должна быть слишком высокой, чтобы не подвергать растяжку пластическим деформациям при рабочей нагрузке.
Пример 3.
Растяжка - нихромовая проволока длиной с = 20 мм. α = 18⋅10-61/град. Эксплуатационный температурный диапазон Тэксп = 0 ± ΔТэксп. - ΔТэксп = 40°С.
Перемещение шторки S = 0,3 мм (см. Пример 2). Соответствующее необходимое удлинение растяжки Δс зависит от исполнения коромысла 9, а именно - от соотношения плеч L2/L1. Например, при L2/L1 = 2 удлинение Δс = S/2 = 0,15 мм.
Температурное приращение растяжки
ΔТ = Δс/αс = 0,15/(18⋅10-6⋅20) ~ 420°>>ΔТэксп.
Температура плавления сплава Х20Н80 - Тпл = 1200°С >> ΔТ.
Энергия, необходимая для повышения температуры растяжки, ЕΔТ = βmΔТ, где β -теплоемкость материала растяжки; m - масса прогреваемого объема.
Пример 4. Габариты токопроводящей растяжки∅0,01×2 см. Объем VT ~ 2⋅10-4 см3. Плотность сплава Х20Н80 ρТ = 7,94 г/см3; m = ρTVT= 1,6⋅10-6 кг; теплоемкость нихрома β = 0,57 Дж/кгК.
Ет = βmΔТ = 0,57⋅1,6⋅10-6⋅420 = 0,00038 Дж = 0,38 мДж.
Сопротивление нихромовой проволоки
Импульс тока энергией ЕТ через растяжку может быть прямоугольным длительностью ts или экспоненциальным при разряде через растяжку накопительного конденсатора емкостью СТ, заряженного до напряжения U0.
Пример 5.
ρR = 1,01⋅10-6Ом⋅м (нихром Н20Х80); с = 0,02 м; d = 0,1⋅10-3м.
RT = 2,6 Ом.
Прямоугольный импульс. RT = 2,6 Ом; ts = 5⋅10-4 с; ЕТ = 0,38 мДж. Энергия
Экспоненциальный импульс. Постоянная времени разряда конденсатора емкостью С τС~ts/3 = 0,17 мс. Энергия
Описанное техническое решение обеспечивает безопасное применение фотоприемного устройства в составе любой аппаратуры и в любых условиях эксплуатации. При этом габариты и масса шторки с приводом, а также объем логического модуля позволяют встраивать эти узлы в существующие миниатюрные приемники без изменения их типоразмеров. Размещение элементов защиты приемника в составе его герметизированного корпуса обеспечивает их надежность, долговечность и максимальный ресурс работы.
Таким образом, предлагаемое техническое решение обеспечивает работоспособность приемника лазерных импульсов для высокоэнергетических входных сигналов и наивысшую чувствительность для слабых входных сигналов при минимальных габаритах устройства и его максимальном быстродействии и надежности.
Источники информации
1. В.А. Волохатюк и др. "Вопросы оптической локации". - Советское радио, М., 1971.-с. 213.
2. В.Г. Вильнер и др. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. «Оптико-механическая промышленность». №9,1981 г. -с. 593.
3. В.А. Афанасьев и др. Порог чувствительности приемника импульсного оптического излучения с большим входным импедансом. Электронная техника. Серия 11. «Лазерная техника и оптоэлектроника». 1988, в.3. - с. 78-83.
4. В.Г. Вильнер и др. Приемник импульсных оптических сигналов. Патент РФ № 2506547.
5. П.М. Боровков и др. Особенности схемотехники импульсных пороговых ФПУ с малым временем восстановления чувствительности после воздействия импульса перегрузки.«Прикладнаяфизика», № 1, 2015 г. - с. 61-65.
6. Radiation receiver with active optical protection system. USpatentNo6,548,807 - прототип.
7. В.И. Кошкин, М.Г. Ширкевич. «Справочник по элементарной физике». - Наука. М., 1972. - с. 29.
8. Каталог ООО «Виброна».
http://vibrona.ru/wp-content/uploads/2014/04/kruchenie.pdf
Изобретение относится к области приема оптического излучения и касается приемника лазерных импульсов. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с двумя рабочими положениями. В состав устройства введен привод шторки, включающий укрепленную на корпусе пружину кручения, соосно связанную с коромыслом, одно из плеч которого притянуто к корпусу растяжкой с усилием, определяемым заданным быстродействием привода шторки, а на свободном плече коромысла закреплена шторка. Соотношение плеч коромысла выбрано таким образом, чтобы при изменении длины растяжки на величину Δс, шторка перемещалась на заданное расстояние между исходным и рабочим положениями. Растяжка представляет собой токопроводящую нить, к концам которой подведен источник управляющего электрического сигнала, при подаче которого температурное расширение растяжки от ее нагрева протекающим электрическим током составляет величину Δс. Технический результат заключается в обеспечении работоспособности устройства для высокоэнергетических входных сигналов и максимальной чувствительности для малых сигналов при минимальных габаритах устройства и его максимальном быстродействии и надежности. 2 з.п. ф-лы, 1 ил.
Комментарии