Код документа: RU2431219C2
Описание
Настоящее изобретение относится к светоизлучающим устройствам, в основном к области светодиодов.
Широко известны люминофоры, содержащие силикаты, фосфаты (например, апатит) и алюминаты в качестве основных материалов, с переходными металлами или редкоземельными металлами, добавленными в качестве активирующих материалов к основным материалам. В частности, поскольку в последние годы голубые светодиоды стали применяться на практике, то энергично осуществляется разработка излучающих белый свет устройств с использованием таких голубых светодиодов в сочетании с такими кристаллическими люминофорами. Поскольку предполагается, что излучающие белый свет устройства со светодиодами в качестве источника света имеют меньшее потребление электроэнергии и более длительный срок службы, чем существующие источники белого света, то процесс разработки протекает в направлении применения их для задней подсветки жидкокристаллических панелей, в осветительных приборах для внутреннего и наружного освещения, для задней подсветки автомобильных панелей, для передних фар автомобиля и сигнальных источников света, источников света в проекционных устройствах и т.п.
Однако согласно предшествующему уровню техники изготовление светодиодов включает в себя сложные способы, особенно в части применения преобразующих цвет материалов. В отношении настоящего изобретения преобразующий цвет материал в основном означает и/или включает в себя материал, который способен поглощать свет от светоизлучающего устройства и излучать свет на другой длине волны, который в большей части применений включает в себя зеленый и/или красный свет.
Задача настоящего изобретения заключается в создании светоизлучающего устройства, которое позволяет для большей части применений облегчить встраивание светодиода.
Эта задача решается светоизлучающим устройством по пункту 1 формулы настоящего изобретения. В соответствии с этим предложено светоизлучающее устройство, содержащее по меньшей мере один источник света и по меньшей мере один керамический сферический, преобразующий цвет материал со средним диаметром от ≥25 мкм до ≤2500 мкм. Для примера, источник света может быть неорганическим светодиодом, органическим светодиодом или лазерным диодом.
Для широкого круга применений в рамках настоящего изобретения установлено, что светоизлучающее устройство и/или использование такого по меньшей мере одного керамического сферического, преобразующего цвет материала для светоизлучающего устройства обеспечивает получение по меньшей мере одного из следующих преимуществ:
- Поскольку светоизлучающее устройство содержит сферический, преобразующий цвет материал, то этот материал вследствие небольшого трения между сферами может быть легко принужден внешней силой и/или действием самоагрегации к сборке при низких давлениях в плотно упакованные структуры.
- Вследствие макроскопического характера (в сравнении с атомными размерами) сфер с минимальным средним диаметром 25 мкм использование по меньшей мере одного керамического сферического, преобразующего цвет материала позволяет очень точно дозировать сферы, в результате чего достигается хороший контроль цветности.
- Вследствие сферической формы по меньшей мере одного керамического сферического, преобразующего цвет материала в рамках широкого круга применений могут быть получены качественное преобразование света, хорошие характеристики смешения и выходные характеристики.
- По меньшей мере один керамический сферический, преобразующий цвет материал, а также светоизлучающее устройство, содержащее такой по меньшей мере один керамический сферический, преобразующий цвет материал, в рамках широкого круга применений настоящего изобретения могут быть получены и/или изготовлены с использованием несложных и эффективных способов, например способов, описанных ниже.
- Вследствие точного контроля осаждения сферического, преобразующего цвет материала может быть легко реализована комбинация различных, преобразующих цвет материалов с видоизмененными люминесцентными свойствами.
Термин «сферический» в отношении настоящего изобретения в основном означает и/или включает в себя, что среднее отклонение формы по меньшей мере одного керамического сферического, преобразующего цвет материала от идеальной сферической формы составляет ≤10%, что является мерой для предпочтительного осуществления настоящего изобретения. В данном случае среднее отклонение означает усредненную разность между локальным диаметром и средним диаметром керамического сферического, преобразующего цвет материала.
В частности, предпочтительно, чтобы среднее отклонение формы по меньшей мере одного керамического сферического, преобразующего цвет материала от идеальной сферической формы составляло ≤5%, более предпочтительно, чтобы оно составляло ≤2%, и наиболее предпочтительно, чтобы оно составляло ≤1%.
Термин «керамический материал» в отношении настоящего изобретения означает и/или включает в себя главным образом кристаллический или поликристаллический плотный материал или композиционный материал с управляемым количеством пор или который является беспористым.
Термин «поликристаллический материал» в отношении настоящего изобретения означает и/или включает в себя главным образом материал с объемной плотностью, превышающей 90% основной структурной составляющей, состоящий из более чем 80% монокристаллических доменов, при этом каждый домен имеет диаметр больше 0,5 мкм, а домены имеют различные кристаллографические ориентации. Монокристаллические домены могут быть соединены аморфным или стеклообразным материалом или дополнительными кристаллическими составляющими.
Согласно предпочтительному осуществлению настоящего изобретения предложено светоизлучающее устройство, содержащее по меньшей мере один источник света и по меньшей мере один керамический сферический, преобразующий цвет материал со средним диаметром от ≥100 мкм до ≤2000 мкм, с более предпочтительным от ≥200 мкм до ≤1500 мкм, с еще более предпочтительным от ≥250 мкм до ≤1000 мкм и с наиболее предпочтительным от ≥300 мкм до ≤750 мкм.
Согласно предпочтительному осуществлению по меньшей мере один керамический сферический, преобразующий цвет материал имеет плотность ≥95% и ≤100% теоретической плотности соответствующего монокристалла. Установлено, что это предпочтительно для широкого круга применений в рамках настоящего изобретения, поскольку в таком случае люминесцентные свойства по меньшей мере одного керамического сферического, преобразующего цвет материала могут быть улучшены вследствие снижения количества рассеиваемого света. В результате меньшего рассеивания средний световой путь в керамическом сферическом, преобразующем цвет материале сокращается, и поэтому уменьшается величина потерь света на излучение.
Более предпочтительно, чтобы по меньшей мере один керамический сферический, преобразующий цвет материал имел плотность ≥97% и ≤100% теоретической плотности соответствующего монокристалла, еще более предпочтительной является плотность ≥98% и ≤100%, все же еще более предпочтительной является плотность ≥98,5% и ≤100% и наиболее предпочтительной является плотность ≥99,0% и ≤100%.
Согласно одному осуществлению настоящего изобретения диаметры сфер по меньшей мере одного керамического сферического, преобразующего цвет материала подчиняются по существу логарифмически нормальному распределению с шириной s≤0,1. Логарифмически нормальное распределение означает распределение, в котором число n(a) керамических сферических, преобразующих цвет материалов с диаметром а и средним диаметром а0 вытекают из:
В данном случае s обозначает ширину распределения n(a). N является суммарным числом керамическим сферических, преобразующих цвет материалов. Установлено, что в рамках широкого круга применений настоящего изобретения самоагрегация по меньшей мере одного керамического сферического, преобразующего цвет материала особенно облегчается при более единообразных размерах диаметров.
Предпочтительно, чтобы диаметры сфер по меньшей мере одного керамического сферического, преобразующего цвет материала подчинялись по существу логарифмически нормальному распределению с шириной s≤0,08, более предпочтительной является s≤0,06.
Согласно предпочтительному осуществлению настоящего изобретения шероховатость (нарушение планарности поверхности; измеряемая как среднеквадратическое значение разности между самым высоким и самым глубоким элементами поверхности) поверхности (поверхностей) по меньшей мере одного керамического сферического, преобразующего цвет материала, составляет ≥0,001 мкм и ≤1 мкм.
Согласно примеру осуществления настоящего изобретения шероховатость поверхности (поверхностей) по меньшей мере одного керамического сферического, преобразующего цвет материала составляет ≥0,005 мкм и ≤0,8 мкм, согласно примеру осуществления настоящего изобретения составляет ≥0,01 мкм и ≤0,5 мкм, согласно примеру осуществления настоящего изобретения составляет ≥0,02 мкм и ≤0,2 мкм и согласно примеру осуществления настоящего изобретения составляет ≥0,03 мкм и ≤0,15 мкм.
Согласно предпочтительному осуществлению настоящего изобретения удельная площадь поверхности по меньшей мере одного керамического сферического, преобразующего цвет материала составляет ≥10-7 м2/г и ≤0,1 м2/г. В данном случае удельная площадь поверхности означает сумму всех площадей поверхности всех керамических сферических, преобразующих цвет материалов, деленную на суммарную массу всех керамических сферических, преобразующих цвет материалов.
Согласно предпочтительному осуществлению настоящего изобретения по меньшей мере один керамический сферический, преобразующий цвет материал является по существу изготовленным из материала, выбранного из группы, содержащей:
где dn - толщина многослойного узла сфер, r - радиус сфер и n - число слоев, уплотненных в шестиугольники сфер. На практике для многих применений в рамках настоящего изобретения это значение по существу достигалось с всего лишь небольшим отклонением.
На фиг.9 показан очень схематический вид компоновки светоизлучающего устройства согласно пятому осуществлению настоящего изобретения, имеющей керамические сферические, преобразующие цвет материалы двух видов.
В этом осуществлении имеются два узла 36, 38 из двух керамических сферических, преобразующих цвет материалов 10 и 20, которые размещены в многослойной структуре, один поверх другого. Светоизлучающее устройство содержит также источник 40 света (например, кристалл AlInGaN светодиода), излучающий первичный свет 40а, который преобразуется керамическим сферическим, преобразующим свет материалом во вторичный свет 40b. В зависимости от свойств керамического сферического, преобразующего свет материала вторичный свет 40b может также содержать некоторое количество первичного света 40а. Поскольку два керамических сферических, преобразующих света материала представляют собой различные материалы, характеристики излучения также будут различными, вследствие чего обеспечивается возможность изменения люминесцентных свойств светодиода.
Само собой разумеется, что при выполнении светоизлучающего устройства в соответствии с фиг.9 (или в соответствии с дальнейшими осуществлениями, не показанными на чертежах, когда имеется еще большее количество различных керамических сферических, преобразующих цвет материалов) также предоставляется способ задания и/или регулирования качества цветовоспроизведения и/или коррелированной цветовой температуры светоизлучающего устройства.
Однако согласно дальнейшему осуществлению (не показанному на фигурах) дополнительный преобразующий цвет материал помещен в материал 16 матрицы (показанный на фиг.3). В изготовленном светоизлучающем устройстве также будут присутствовать преобразующие цвет материалы двух видов без использования дополнительного слоя. Это является преимуществом для некоторых применений в рамках настоящего изобретения.
В дальнейшем осуществлении (не показанном на фигурах, но аналогичном показанному на фиг.9) имеются два сферических материала, один из которых является преобразующим цвет, другой не является преобразующим. Этим также предоставляется способ задания и/или регулирования коррелированной цветовой температуры светоизлучающего прибора. Не преобразующий цвет материал используется для преобразующего цвет материала в значении «разбавляющего» материала. При этом для многих применений можно легко получать светоизлучающие устройства с различными коррелированными цветовыми температурами (или другими оптическими свойствами), имеющие один и тот же размер, поскольку при этом необходимо изменять только соотношения между преобразующими цвет и не преобразующими цвет сферами.
На фиг.10 показан очень схематический вид компоновки светоизлучающего устройства с источником 40 света согласно шестому осуществлению настоящего изобретения. В этом осуществлении керамический сферический, преобразующий цвет материал скомпонован в виде «стеклянного свода» 50, который может быть отражающим. Источник 40 света излучает свет к керамическому сферическому, преобразующему свет материалу. При этом преобразование керамического сферического, преобразующего цвет материала может быть дополнительно повышено.
Изобретение будет дополнительно пояснено нижеследующим примером I, посредством которого только для иллюстрации показан способ изготовления керамического сферического, преобразующего цвет материала согласно дальнейшему осуществлению настоящего изобретения.
Пример I
Al2O3 (99,99%, средний размер зерен 350 нм), Y2O3 (99,99%, средний размер зерен 700 нм) и СеО2 (>98,5%, средний размер зерен 40 нм) перемалывали совместно с высокочистыми алюминиевыми размалывающими материалами (Nikkato, SSA-W 999) в изопропиловом спирте. После добавления поливинилбутиралового связующего вещества (Sekisui, BM-S) порошковую суспензию высушивали и гранулировали, чтобы образовать гранулят, имеющий гранулы с диаметрами в пределах 80-120 мкм. Затем гранулят прессовали в холодном состоянии в бусины со средним диаметром 800 мкм и разделяли при 500°С в воздухе.
Затем бусины покрывали водонепроницаемым покровным слоем из полиэтилена. Полиэтиленовое покрытие наносили методом псевдоожиженного слоя при температурах в диапазоне 200-400°С, при этом в качестве варианта можно использовать электростатическое напыление или ворсовое напыление.
Затем осуществляли изостатическое прессование покрытых бусин в холодном состоянии при давлениях в диапазоне от 2000 до 4500 бар (от 200 до 450 МПа). После прессования остаточные органические связующие вещества и покрытия удаляли, отжигая бусины в воздухе при 1000°С (линейное изменение нагревания: 50К/ч) в течение 12 ч. Затем разделенные необожженные керамические изделия спекали в атмосфере окиси углерода в течение 2 ч при 1750°С.
После спекания и деагломерации путем умеренного размалывания осуществляли изостатическое горячее прессование керамических сфер на основе алюмоиттриевого граната и церия в аргоне при 1700°С и давлении 500 бар (50 МПа). Затем прозрачные сферы шлифовали и полировали при мокром измельчении на вальцовом станке с использованием имеющихся на рынке измельчающих и полирующих добавок до достижения конечного качества обработки поверхности и диаметра. После очистки керамические сферы дополнительно отжигали в воздухе при 1350°С в течение 4 ч.
Полученный таким образом керамический сферический, преобразующий цвет материал имел средний диаметр 450 мкм при среднем отклонении формы от идеальной сферической формы <1%.
Конкретные сочетания элементов и признаков в подробно описанных выше осуществлениях являются только примерными; кроме того, явно предполагаются взаимные перестановки и замены этих идей изобретения другими идеями изобретения из этого описания и патентов/заявок, включенных посредством ссылок. Как должны признать специалисты в данной области техники, варианты, модификации и другие реализации описанного в настоящей заявке могут придти в голову специалистам в данной области техники без отступления от сущности и объема заявленного изобретения. В соответствии с этим предшествующее описание является только примером, и не предполагается ограничивающим. Объем изобретения определен в нижеследующей формуле изобретения и, кроме того, эквивалентами. Кроме того, условные обозначения, использованные в описании и формуле изобретения, не ограничивают объем заявленного изобретения.
Изобретение может быть использовано в осветительных системах. Светоизлучающее устройство согласно изобретению содержит по меньшей мере один источник света (40) и по меньшей мере один керамический сферический, преобразующий цвет материал (10) со средним диаметром от ≥100 мкм до ≤2500 мкм. Также предложены два способа получения керамического сферического, преобразующего свет материала и система, содержащая светоизлучающее устройство согласно изобретению. Изобретение способствует облегчению изготовления, а также улучшению люминесцентных свойств светоизлучающего устройства. 4 н. и 6 з.п. ф-лы, 10 ил.
Полупроводниковый источник белого света
Комментарии