Код документа: RU2593174C2
Настоящее изобретение относится к способу и системе расчета взлетного веса летательного аппарата.
Детали летательного аппарата обычно подвергаются усталостному повреждению в ходе своего срока службы.
Детали, подвергаемые серьезному усталостному повреждению, конструируются с использованием спектра нагружения, соответствующего заданным полетным маневрам, выполняемым в течение заданных продолжительностей времени.
Другими словами, наиболее важные детали конструируются с учетом усталости на основе спектра нагружения и выпускаются с заданной усталостной долговечностью.
Существует необходимость в индустрии определять фактическую эксплуатационную усталость составляющих деталей летательного аппарата, с тем чтобы безопасно определять остаточный срок службы относительно усталостной долговечности, для которой они были сконструированы.
Одним из основных параметров для расчета фактической усталости составляющих деталей летательного аппарата является взлетный вес летательного аппарата.
По взлетному весу можно рассчитывать вес в различных полетных условиях, от которых зависят положения самолета в воздухе, оказывающие влияние на усталостное повреждение составляющих деталей.
Взлетный вес летательного аппарата обычно рассчитывается добавлением веса полезного груза, топлива и экипажа к весу летательного аппарата без нагрузки.
Существует необходимость в рамках индустрии в более точном способе расчета взлетного веса летательного аппарата, с тем чтобы более точно определять фактическую усталость составляющих деталей летательного аппарата.
Цель настоящего изобретения состоит в том, чтобы обеспечить способ расчета взлетного веса летательного аппарата, как заявлено в пункте 1 формулы изобретения.
Настоящее изобретение также относится к системе для расчета взлетного веса летательного аппарата, как заявлено в пункте 9 формулы изобретения.
Предпочтительный неограничивающий вариант осуществления настоящего изобретения далее будет описан в качестве примера со ссылкой на прилагаемые чертежи, на которых:
фиг.1 показывает летательный аппарат, в частности вертолет, содержащий систему расчета взлетного веса в соответствии с настоящим изобретением, и реализующую способ расчета взлетного веса согласно настоящему изобретению;
фиг.2 показывает характеристическую кривую, применяемую в системе по фиг.1;
фиг.3 показывает интерполяцию характеристической кривой по фиг.2.
Номер 1 на фиг.1 указывает летательный аппарат - в показанном примере вертолет.
Вертолет 1 содержит фюзеляж 2 с носом 5; два двигателя 6 (просто схематично показанные на фиг.1); и несущий винт 3, установленный на верхнюю часть фюзеляжа 2 для создания подъемной силы и силы тяги, требуемых для подъема и приведения в движение вертолета 1.
Номер 10 на фиг.1 указывает систему для расчета взлетного веса вертолета 1.
Система 10 преимущественно содержит:
- каскад 20 регистрации для регистрации значений W(t1), W(t2), W(t3),..., W(ti),..., W(tn), связанных с весом вертолета 1 в некотором количестве соответствующих моментов времени t1, t2, t3,..., ti,..., tn, в которые вертолет 1 находится в горизонтальном полете; и
- каскад 25 расчета для расчета взлетного веса EIW вертолета 1 на основе значений W(t1), W(t2), W(t3),..., W(ti),..., W(tn).
В последующем описании, горизонтальный полет подразумевается означающим состояние, в котором вертолет летит на, по существу, постоянной высоте и скорости или осуществляет висение.
Система 10 предпочтительно также содержит:
- каскад 30 сбора данных для получения полетных параметров, таких как угол крена, угол тангажа, производная угла крена, производная угла тангажа, производная угла рыскания, истинная скорость полета вертолета 1, коэффициент нагрузки, измеренная радаром высота, вертикальная скорость, прямое ускорение вертолета, индикация шасси на земле, мощность и частота вращения двигателей 6, частота вращения несущего винта и измеренная барометром высота по давлению; и
- каскад 35 распознавания полетных условий, который, на основе полученных полетных параметров, определяет, находится или нет вертолет 1 в горизонтальном полете.
Каскад 30 сбора данных предназначен для получения полетных параметров с заданной частотой, например 3 Гц.
Каскад 35 распознавания предназначен для анализа полетных параметров, полученных каскадом 30 сбора данных, и для определения стабильного горизонтального полета вертолета 1, когда некоторые из параметров, полученных каскадом 30 сбора данных, остаются ниже соответственных пороговых значений на дольше, чем заданный временной интервал.
В описанном варианте осуществления, каскад 35 распознавания предназначен для определения стабильного висения вертолета 1, когда в течение по меньшей мере временного интервала ∆t:
- угол крена находится ниже порогового значения, например, в десять градусов;
- угол тангажа находится ниже порогового значения, например, в десять градусов;
- вертикальная скорость ниже порогового значения, например, 50 футов в минуту;
- измеренная радаром высота находится между нижним пороговым значением и верхним пороговым значением, например, 5 и 100 футами;
- истинная скорость полета вертолета 1 ниже 10 узлов.
В описанном примере, временной интервал ∆t равен по меньшей мере трем секундам.
Каскад 20 регистрации предназначен для регистрации значений W(t1), W(t2), W(t3),..., W(ti),..., W (tn) в некотором количестве моментов времени t1, t2, t3,..., ti,..., tn, в которых вертолет 1 находится в состоянии стабильного висения на соответственных разных или равных высотах h(t1), h(t2), h(t3),..., h(ti),..., h(tn).
Более точно, каскад 20 регистрации предназначен для приема параметров, полученных каскадом 30 сбора данных; для регистрации значений W(t1), W(t2), W(t3),..., W(ti),..., W(tn), связанных с весом вертолета 1, если каскад 35 распознавания определяет состояние стабильного висения вертолета 1; и для передачи значений W(t1), W(t2), W(t3),..., W(ti),..., W(tn), зарегистрированных в соответственные моменты t1, t2, t3,..., ti,..., tn, в каскад 25 расчета.
Каскад 20 регистрации предназначен для регистрации значений W(t1), W(t2), W(t3),..., W(ti),..., W(tn) для каждого состояния стабильного висения на основании:
- барометрической высоты и температуры наружного воздуха, PALT(ti) и TOUT(ti), зарегистрированных бортовыми измерительными приборами в момент времени ti и на высоте h(ti);
- коэффициента n(ti), пропорционального частоте вращения двигателе 6 в момент времени ti и на высоте h(ti);
- мощности Power(ti), создаваемой двигателями 6 в момент времени ti и на высоте h(ti); и
- некоторого количества характеристических кривых 100, 101, 102, 103, 104 (фиг.2 и 3), хранимых в каскаде 20 регистрации.
Более точно, каскад 20 регистрации регистрирует, для каждого состояния стабильного висения, следующие i-е параметры в момент времени ti и на высоте h(ti):
и
где:
p0 - стандартное давление на уровне моря;
R - универсальная постоянная идеального газа; и
g - ускорение свободного падения.
Каскад 20 регистрации также регистрирует, на основе параметров δ(ti) и Ψ(ti), параметр σ(ti) в момент времени ti и на высоте h(ti):
где:
ρ0 - стандартная плотность на уровне моря.
На характеристических кривых 100, 101, 102, 103, 104 (фиг.2 и 3) ось Y показывает параметр:
в момент времени ti и на высоте h(ti); а
ось X - параметр:
в момент времени ti и на высоте h(ti), и при этом Weight(ti) - вес вертолета 1 в момент времени ti, полученный из характеристических кривых 100, 101, 102, 103, 104.
Характеристические кривые 100, 101, 102, 103, 104 начерчены для увеличивающихся высот h(ti) висения. Другими словами, характеристическая кривая 100 (101, 102, 103) начерчена для более низкой высоты h(i) висения, чем характеристическая кривая 101 (102, 103, 104).
Каскад 20 регистрации предназначен для интерполяции характеристической кривой 106 (фиг.3) на высоте h(ti) в случае, если таковая не совпадает с высотами, на которых начерчены характеристические кривые 100, 101, 102, 103. На фиг.3 характеристическая кривая 106 интерполируется на высоте h(ti) между высотами характеристических кривых 100 и 101.
Каскад 20 регистрации предназначен для расчета каждого значения W(t1), W(t2), W(t3),..., W(ti),..., W(tn) в соответственный момент времени ti согласно уравнению:
где поправочные значения C(t1), C(t2), C(ti),... C(tn) являются суммой:
- соответственных первых слагаемых, связанных с расходом топлива вплоть до момента времени t0, t1,..., ti,..., tn; и
- соответственных введенных экипажем вторых слагаемых, связанных с изменениями веса, например, в результате погрузки или выгрузки материала на и с вертолета 1.
Каскад 25 расчета предназначен для расчета веса EIW вертолета 1 согласно уравнению:
где:
∆ - значение надежности, прибавляемое к расчетному весу EIW вертолета 1.
Другими словами, каскад 25 расчета предназначен для расчета веса EIW вертолета в качестве суммы среднего арифметического значений W(ti) и значения ∆ надежности.
Каскад 20 регистрации предпочтительно предназначен для определения неисправности, когда в данный момент времени ti+1:
Другими словами, каскад 25 расчета предназначен для определения неисправности, когда разница между двумя следующими друг за другом значениями W(ti), W(ti+1), зарегистрированными в моменты времени ti и ti+1, превышает значение ∆ надежности.
В этом случае, каскад 25 расчета отправляет сигнал неисправности в блок технического обслуживания системы 10 и/или удаляет значения W(ti+1, ti+2, …) из расчета веса EIW.
Каскады 20, 25, 35 регистрации, расчета и распознавания предпочтительно расположены на наземной станции 19, а каскад 30 сбора данных расположен на вертолете 1.
Полетные параметры, полученные каскадом 30 сбора данных, загружаются в каскад 25 расчета, например, посредством кассеты переноса данных.
Каскады 20, 25, 30, 35 регистрации, расчета, сбора данных и распознавания управляются программным обеспечением, загруженным и приведенным в исполнение системой 10.
В практическом использовании, полетные параметры получаются каскадом 30 сбора данных на заданной частоте выборки и загружаются в каскад 35 распознавания наземного базирования, который определяет, находится ли вертолет 1 на висении.
Более точно, каскад 35 распознавания определяет стабильное висение вертолета 1, когда по меньшей мере на всем протяжении интервала ∆t:
- угол крена находится ниже порогового значения, например в десять градусов;
- угол тангажа находится ниже порогового значения, например в десять градусов;
- вертикальная скорость ниже порогового значения, например 50 футов в минуту;
- измеренная радаром высота находится между нижним пороговым значением и верхним пороговым значением, например 5 и 100 футами;
- истинная скорость полета вертолета 1 ниже 10 узлов.
Для каждых момента времени ti и высоты h(ti), при которых каскад 35 распознавания определяет состояние стабильного висения, каскад 20 регистрации регистрирует значение W(ti) веса вертолета 1.
Более точно, на основе i-х значений высоты PALT(ti) по давлению и температуры TOUT(ti) на высоте h(ti) и в момент времени t(i), каскад 20 регистрации регистрирует параметры:
и
Далее, каскад 20 регистрации регистрирует параметр:
В этой точке, при заданных параметрах σ(ti), n(ti), значении Power(ti) отбора мощности и высоте h(ti), значение Weight(ti) веса может получаться из характеристических кривых 100, 101, 102, 103, 104 на фиг.2 и 3.
Каскад 20 регистрации вносит поправки в значение Weight(ti), применяя поправочные значения C(ti), связанные с расходом топлива между моментами времени ti-1 и t, операции загрузки/выгрузки материала, согласно уравнению
Значение W(ti), связанное с высотой h(ti) и моментом времени ti, отправляется в каскад 25 расчета.
Каскад 25 расчета, таким образом, принимает некоторое количество значений W(t1), W(t2), W(t3),..., W(ti),..., W(tn), связанных со значениями веса, зарегистрированными в соответственные моменты времени t1, t2, t3,..., ti,..., tn и на соответственных высотах h(t1), h(t2), h(t3),..., h(ti), h(tn).
Каскад 25 расчета рассчитывает взлетный вес EIW вертолета 1, принимая во внимание значение ∆ надежности. Более точно, взлетный вес EIW рассчитывается согласно уравнению:
Каскад 25 расчета вырабатывает сигнал, указывающий неисправность системы 10, когда в момент времени t(i+1):
В этом случае, каскад 25 расчета не учитывает значения W(ti+2), W(ti+3),..., W(tn) при расчете взлетного веса EIW вертолета 1.
Преимущества способа и системы 10 согласно настоящему изобретению будут ясны из вышеприведенного описания.
В частности, способ и система 10 согласно настоящему изобретению дает возможность расчета взлетного веса EIW вертолета 1 во время эксплуатации вертолета 1.
Взлетный вес EIW, таким образом, может эффективно использоваться, особенно в сочетании со значимой индикацией полетных маневров, фактически выполняемых вертолетом 1, для оценки фактической усталости и отсюда фактического остаточного срока службы наиболее важных составляющих деталей вертолета 1.
Более того, способ и система 10 согласно изобретению предусматривают легкое измерение фактического взлетного веса вертолета 1, без необходимости в бортовых датчиках нагрузки.
В заключение, еще один важный момент, на который нужно обратить внимание, состоит в том, что, в режиме стабильного висения, мощность Power(ti), необходимая для полета, по существу используется для подъема веса вертолета 1.
Характеристические кривые 100, 101, 102, 103, 104 поэтому легки для вычерчивания и обычно показаны в руководстве по эксплуатации вертолета 1.
Посредством применения измерения мощности Power(ti), отбираемой в режиме стабильного висения на высоте h(ti), способ согласно изобретению чрезвычайно легок для реализации с использованием характеристических кривых 100, 101, 102, 103, 104.
Ясно, что изменения могут быть произведены в отношении способа и системы 1, как описанные в материалах настоящей заявки, однако, не выходя из объема настоящего изобретения.
В заключение, летательный аппарат может быть конвертопланом.
Изобретение относится к области авиации, в частности к способам и системам расчета взлетного веса летательных аппаратов. Способ расчета взлетного веса летательного аппарата, выполненного с возможностью висения, содержит этапы, на которых регистрируют необходимую мощность висения в первый и второй момент времени, получают третьи значения второй величины, связанной с давлением на высоте полета, получают четвертые значения третьей величины, связанной с температурой на высоте полета, получают пятые значения четвертой величины, связанной с частотой вращения двигателя, рассчитывают шестые значения пятой величины, связанной с относительной плотностью на высоте полета в упомянутые первый и второй моменты времени. Используют характеристическую кривую висения для расчета седьмого и восьмого значений полетного веса летательного аппарата в первый и второй момент времени. Достигается возможность точного расчета взлетного веса. 2 н. и 8 з.п. ф-лы, 3 ил.
Комментарии