Код документа: RU2627765C1
Изобретение относится к области синтеза органических соединений, а именно к способам их получения в новых реакционных средах-растворителях с участием гетерогенных катализаторов, выбору условий проведения реакций, в частности, получению ароматических аминов из соответствующих нитросоединений.
Ароматические амины широко используются в качестве промежуточных соединений в производстве полимеров, пигментов, пестицидов, красителей и лекарственных препаратов (Т. Kahl,
Одним из основных путей практического получения ароматических аминов является восстановление соответствующих нитроароматических соединений, многие из которых являются легкодоступными. В качестве восстанавливающих агентов могут использоваться металлы (Zn, Sn, Fe) в присутствии кислот (The chemistry of anilines, part 2, 1st ed., Ed. Z. Rappoport, Wiley, King's Lynn, 2007, pp. 455, 715), применяются методы каталитического гидрирования (H.-U. Blaser, С. Malan, В. Pugin, F. Spindler, H. Steiner, M. Studer. Selective hydrogenation for fine chemicals: recent trends and new developments, Advanced Synthesis & Catalysis 345 (2003) 103-151). Недостатками этих вариантов проведения процесса являются использование металлов и кислот или необходимость использования дорогостоящих благородных металлов в качестве компонентов катализаторов.
Галогензамещенные ароматические амины в промышленности получают гидрированием галогензамещенных ароматических нитросоединений водородом в присутствии платиновых катализаторов с добавками морфолина или пиперазина, или их производных, для подавления побочной реакции гидродегалогенирования (J.R. Kosak, L. Spiegler, patent US 3361819, 1968; A.J. Bird, G.G. Ferrier, patent US 4375550, 1983). Недостатком этого варианта проведения процесса является необходимость использования дорогостоящих благородных металлов в качестве компонентов катализаторов.
Ранее был разработан метод, позволяющий проводить синтезы ароматических аминов из ароматических нитросоединений каталитическим переносом водорода с высокой производительностью в непрерывном режиме за времена контакта в несколько минут с использованием в качестве катализатора Al2O3 (Аникеев В.И., Сивцев В.П., Волчо К.П., Салахутдинов Н.Ф. Способ получения галогензамещенных ароматических аминов. Патент РФ №2531919, 02.09.2014; Сивцев В.П., Аникеев В.И., Волчо К.П., Салахутдинов Н.Ф. Способ получения ароматических диаминов, триаминов из ароматических нитросоединений. Патент РФ 2549618, 27.04.2015; V.P. Sivcev, D.V. Korchagina, E.V. Suslov, K.P. Volcho, N.F. Salakhutdinov, V.I. Anikeev. Efficient reduction of nitroarenes using supercritical alcohols as a source of hydrogen in flow-type reactor in the presence of alumina. J. Supercritical Fluids 2014, 86, 137-144), принятый за прототип. В качестве восстановителя и растворителя в этих реакциях выступали алифатические спирты, предпочтительно, изопропанол, превращающиеся в соответствующие карбонильные соединения. Этот метод позволяет проводить эффективное и высокоселективное восстановление хлорнитробензолов и полинитросоединений в соответствующие ароматические амины, но оказался недостаточно селективен при использовании других субстратов, таких как нитробензол 1 и бромнитробензолы.
Так, при восстановлении нитробензола 1 селективность по анилину 2 при использовании в качестве растворителя изопропанола или смеси изопропанол/CO2 при значительной конверсии (>50%) была менее 70% (V.P. Sivcev, D.V. Korchagina, E.V. Suslov, K.P. Volcho, N.F. Salakhutdinov, V.I. Anikeev. Effecient reduction of nitroarenes using supercritical alcohols as a source of hydrogen in flow-type reactor in the presence of alumina. J. Supercritical Fluids 2014, 86, 137-144). В качестве побочных образовывались продукты алкилирования (3), алкоксилирования (4) или обоих этих процессов (5).
Применение в качестве растворителя и восстановителя 4-метилпентан-2-ола 6 позволило увеличить селективность по анилину 2 до 95% при 70%-ной конверсии нитробензола 1, однако, высокая температура кипения соединения 6, затрудняющая отгонку растворителя, и значительная стоимость спирта 6 делают этот процесс экономически нецелесообразным.
При использовании в качестве субстратов бромнитробензолов, в частности, пара-бромнитробензола 7, наблюдалось образование анилина 2, являющегося продуктом гидродегалогенирования, и других побочных соединений (V.P. Sivcev, D.V. Korchagina, E.V. Suslov, K.P. Volcho, N.F. Salakhutdinov, V.I. Anikeev. Effecient reduction of nitroarenes using supercritical alcohols as a source of hydrogen in flow-type reactor in the presence of alumina. J. Supercritical Fluids 2014, 86, 137-144). В результате, селективность по пара-броманилину 8 при высокой конверсии не превышала 70%.
Изобретение решает задачу разработки эффективного синтеза ароматических аминов из ароматических нитросоединений в непрерывном режиме за времена контакта в несколько минут без использования дорогостоящих катализаторов.
Технический результат - увеличение скорости химического процесса, непрерывное получение целевых продуктов и контролируемая селективность их образования.
Для решения этой задачи предложен способ получения ароматических аминов реакцией восстановления из ароматических нитросоединений в сверхкритическом растворителе при температуре Т=240-360°C, предпочтительно, 270-330°C, и давлении P=180-200 атм, реакцию восстановления ароматических нитросоединений осуществляют в присутствии гетерогенного катализатора диоксида циркония ZrO2 или диоксида титана TiO2. Способ осуществляют в трубчатом реакторе проточного типа. В качестве сверхкритического растворителя используют, предпочтительно, изопропиловый спирт или изопропиловый спирт с добавлением CO2.
Существенными признаками предлагаемого способа являются:
1) применение диоксида ZrO2 и диоксида титана TiO2 в качестве катализаторов вместо ранее применявшегося Al2O3; ZrO2 и TiO2 не использовались ранее в качестве катализаторов переноса водорода со спиртов при восстановлении нитросоединений;
2) сверхкритический растворитель-реагент, предпочтительно изопропиловый спирт с добавлением CO2 или без него;
3) трубчатый реактор проточного типа, что позволяет проводить превращения за короткие времена контакта.
Способ получения ароматических аминов из соответствующих нитросоединений осуществляют в сверхкритическом спирте с применением экспериментальной установки на основе трубчатого реактора проточного типа, содержащего гетерогенный катализатор ZrO2 или TiO2. Исходная смесь подавалась в реактор двумя потоками. Первый поток - изопропиловый спирт или CO2 - при помощи шприцевого насоса подают в смеситель, расположенный на входе в реактор, через теплообменник, где нагревают до температуры реакции. Второй поток - раствор ароматического нитросоединения в изопропиловом спирте подают в тот же смеситель при помощи поршневого насоса.
Реакцию проводят в интервале температур Т=240-360°C, предпочтительно 270-330°C, и при давлении P=180-200 атм. Время контакта реакционной смеси составляет около 10 мин. Реакционную смесь на выходе реактора охлаждают и собирают. Состав жидких продуктов реакции анализировался методом хроматомасс-спектрометрии.
Восстановление нитробензола 1 в анилин 2 с участием sc-CO2/изопропанола наблюдается уже при 240°C (Таблица 1). При увеличении температуры конверсия нитробензола 1 возрастает до 83% при 100%-ной селективности по анилину 2. Почти количественная конверсия нитробензола 1 достигается при 300°C, селективность по анилину 2 составляет 100%. Дальнейшее увеличение температуры приводит к появлению побочного продукта N-изопропиланилина 3.
В качестве катализатора превращения нитробензола 1 в анилин 2 может быть использован и TiO2, применение которого позволяет достичь полной конверсии уже при 300°C (Таблица 2). Хотя применение TiO2 приводит к некоторому снижению селективности по анилину 2 при высокой конверсии нитробензола 1 по сравнению с результатами, полученными на ZrO2, селективность в случае применения TiO2 значительно выше, чем в условиях прототипа в присутствии Al2O3, где при использовании в качестве растворителя изопропанола или смеси изопропанол/CO2 при значительной конверсии (>50%) селективность была менее 70% (V.P. Sivcev, D.V. Korchagina, E.V. Suslov, K.P. Volcho, N.F. Salakhutdinov, V.I. Anikeev. Effecient reduction of nitroarenes using supercritical alcohols as a source of hydrogen in flow-type reactor in the presence of alumina. J. Supercritical Fluids 2014, 86, 137-144).
Восстановление нитробензола 1 в анилин 2 можно проводить и в отсутствие CO2, но при этом наблюдается значительное уменьшение селективности (Таблица 3). При достижении высокой конверсии нитробензола 1, селективность составила 82%.
При использовании в качестве субстрата пара-бромнитробензола 7 при проведении превращений в смеси изопропанол/CO2 в присутствии ZrO2 селективность по пара-броманилину 8 превысила 97% при конверсии 92% (Таблица 4). Единственным побочным продуктом в этой реакции оказался пара-бром-N-изопропиланилин 9.
В отличие от превращений нитробензола 1, при проведении восстановления пара-бромнитробензола 7 в индивидуальном изопропаноле, без добавления CO2, не наблюдалось снижения селективности, которая составила 98% при 300°C, хотя конверсия немного снизилась (Таблица 5).
Таким образом, использование ZrO2 в качестве катализатора переноса водорода в системе изопропанол/CO2 позволяет осуществить высокоселективный синтез практически важного анилина 2 из нитробензола 1 в проточном режиме, при высокой конверсии, без использования взрывоопасного молекулярного водорода и дорогостоящих благородных металлов. Предложенная система может быть применена для превращения в соответствующие ароматические амины и замещенных нитробензолов, включая бромнитробензол, легко подвергающийся гидродегалогенированию в процессе восстановления.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1. Синтез анилина 2 в смеси изопропанол/CO2 в присутствии ZrO2
Синтез анилина 2 осуществляют с применением экспериментальной установки с использованием трубчатого проточного реактора, загруженного оксидом циркония ZrO2 объемом 56 см3 (65.7 г). Используют в качестве катализатора ZrO2 со свободной поверхностью по BET ~4.5 м2/г.
Исходную смесь подают в реактор двумя потоками. Первый поток - сверхкритический CO2 (расход 3.5 мл/мин) - при помощи шприцевого насоса подают в смеситель, расположенный на входе в реактор, через теплообменник, где нагревают до температуры реакции. Второй поток (расход 2.0 мл/мин) - 1%-ный раствор нитробензола 1 в изопропиловом спирте подают в тот же смеситель при помощи поршневого насоса.
Состав жидких продуктов реакции анализируют методом хроматомасс-спектрометрии на газовом хроматографе Agilent 6890N с квадрупольным масс-анализатором Agilent 5973N в качестве детектора. Для анализа используют кварцевую колонку HP-5MS (сополимер 5%-дифенил-95%-диметилсилоксана) длиной 30 м, внутренним диаметром 0.25 мм и толщиной пленки неподвижной фазы 0.25 мкм. Развертка - от m/z 29 до m/z 500. Качественный анализ продуктов реакции осуществлялся сравнением полных масс-спектров с соответствующими литературными данными и с данными библиотек NIST (190825 соединений) и Wiley7 (375000 масс-спектров). Состав смесей рассчитывался, исходя из площадей пиков компонентов в хроматограммах.
Реакцию проводят в интервале температур Т=240-360°C, предпочтительно 270-330°C, и при давлении Р=180-240 атм. Время контакта составляет около 10 мин. Реакционную смесь на выходе реактора охлаждают, собирают и анализируют. Полученные результаты представлены в Таблице 1.
Пример 2. Синтез анилина 2 в изопропаноле в присутствии TiO2
Синтез анилина 2 из нитробензола 1 осуществляют с применением экспериментальной установки, описанной в Примере 1, с использованием трубчатого проточного реактора, загруженного оксидом циркония TiO2 объемом 56 см3 (43.7 г). Используют TiO2 со свободной поверхностью по BET ~6.7 м2/г.
Исходную смесь подают в реактор двумя потоками. Первый поток - сверхкритический изопропанол (расход 3.5 мл/мин) - при помощи шприцевого насоса подают в смеситель, расположенный на входе в реактор, через теплообменник, где нагревают до температуры реакции. Второй поток (расход 2.0 мл/мин) - 1%-ный раствор нитробензола 1 в изопропиловом спирте подают в тот же смеситель при помощи поршневого насоса.
Реакцию проводят в интервале температур Т=240-360°C, предпочтительно 270-330°C, и при давлени Р=180-240 атм. Время контакта составляет около 10 мин. Реакционную смесь на выходе реактора охлаждают, собирают и анализируют. Полученные результаты представлены в Таблице 2.
Пример 3. Синтез анилина 2 в изопропаноле в присутствии ZrO2
Синтез анилина 2 из нитробензола 1 осуществляют с применением экспериментальной установки, описанной в Примере 1.
Исходную смесь подают в реактор двумя потоками. Первый поток - сверхкритический изопропанол (расход 3.5 мл/мин) - при помощи шприцевого насоса подают в смеситель, расположенный на входе в реактор, через теплообменник, где нагревают до температуры реакции. Второй поток (расход 2.0 мл/мин) - 1%-ный раствор нитробензола 1 в изопропиловом спирте подают в тот же смеситель при помощи поршневого насоса.
Реакцию проводят в интервале температур Т=240-360°C, предпочтительно 270-330°C, и при давлении Р=180-240 атм. Время контакта составляет около 10 мин. Реакционную смесь на выходе реактора охлаждают, собирают и анализируют. Полученные результаты представлены в Таблице 3.
Пример 4. Синтез пара-броманилина 8 в смеси изопропанол/CO2 в присутствии ZrO2
Синтез пара-броманилина 8 из пара-бромнитробензола 7 осуществляли с применением экспериментальной установки и процедуры, описанных в Примере 1.
Реакцию проводят в интервале температур Т=240-360°C, предпочтительно 270-330°C, и при давлении Р=180-240 атм. Время контакта составляет около 10 мин. Реакционную смесь на выходе реактора охлаждают, собирают и анализируют. Полученные результаты представлены в Таблице 4.
Пример 5. Синтез пара-броманилина 8 в изопропаноле в присутствии ZrO2
Синтез пара-броманилина 8 из пара-бромнитробензола 7 осуществляют с применением экспериментальной установки, описанной в Примере 1, и процедуры, описанной в Примере 3.
Реакцию проводят в интервале температур Т=240-360°C, предпочтительно 270-330°C, и при давлении Р=180-200 атм. Время контакта составляет около 10 мин. Реакционную смесь на выходе реактора охлаждают, собирают и анализируют. Полученные результаты представлены в Таблице 5.
Как видно из описания, изобретение решает задачу контролируемого получения ароматических аминов из соответствующих нитросоединений в выбранном сверхкритическом растворителе на гетерогенном катализаторе ZrO2 или TiO2 и направлено на получение ценных промежуточных соединений, использующихся в производстве полимеров, пигментов, пестицидов, красителей и лекарственных препаратов.
Осуществление химических превращений в сверхкритических флюидах-растворителях может быть положено в основу современных технологий получения широкого класса промышленно важных органических соединений, лекарственных и душистых веществ.
Изобретение относится к усовершенствованному способу получения ароматических аминов, которые используются для получения промежуточных продуктов для получения полимеров, пигментов, пестицидов, красителей и лекарственных средств. Способ заключается в восстановлении ароматических нитросоединений в сверхкритическом изопропиловом спирте в качестве растворителя при температуре 270-330°С и давлении Р=180-200 атм. Особенностью предлагаемого способа является проведение реакции восстановления ароматических нитросоединений в присутствии гетерогенного катализатора диоксида циркония ZrOили диоксида титана TiO. Предпочтительно процесс проводить в трубчатом реакторе проточного типа. В качестве сверхкритического растворителя можно использовать изопропиловый спирт с добавлением сверхкритического CO. Способ позволяет упростить процесс за счет исключения взрывоопасного молекулярного водорода, значительно сократить время проведения процесса за счет увеличения скорости реакции, и избежать образования продуктов разложения. Способ позволяет контролировать селективность образования целевых продуктов. 5 табл., 5 пр.