Код документа: RU2381304C1
Изобретение относится к получению полупроводниковых квантовых точек типов ядро и ядро-оболочка методом коллоидного синтеза, обладающих высокой люминесценцией в видимом диапазоне спектра, высокой фотостабильностью и способных диспергироваться в различные растворители.
Данное изобретение может найти применение в производстве различных люминесцентных материалов, а также в качестве основы для производства сверхминиатюрных светодиодов, источников белого света, одноэлектронных транзисторов, нелинейно-оптических устройств, фоточувствительных и фотогальванических устройств.
Основой для современных способов коллоидного синтеза квантовых точек можно считать способ, предложенный в 1993 году Бавенди с соавторами (JACS, 115, 8706 (1993)). В типичном синтезе в реакционную колбу помещают координирующий растворитель-триоктилфосфиноксид, нагревают до 300°С в атмосфере аргона, а затем через септу шприцом вводят смесь диметилкадмия и триоктилфосфин селенида.
Недостатком способа является низкий квантовый выход флуоресценции за счет дефектности поверхности нанокристаллов, что приводит к появлению энергетических уровней, лежащих внутри запрещенной зоны. Эти уровни действуют как ловушки для электронов и дырок, что ухудшает люминесцентные свойства квантовых точек. Второй недостаток - применение токсичных органометаллических реагентов, самопроизвольно воспламеняющихся на воздухе.
Следующим шагом на пути улучшения люминесцентных свойств квантовых точек было наращивание на ядра полупроводниковой оболочки из более широкозонного полупроводника (J.Phys.Chem, 100, 468 (1996)). Такие квантовые точки более стабильны, чем получаемые способом, предложенным Бавенди, и более устойчивы к обработке при внедрении их в устройства. В типичном синтезе триоктилфосфиноксид нагревают до 350°С в атмосфере аргона, затем через септу вводят смесь диметилкадмия, триоктилфосфин селенида и триоктилфосфина. В итоге при температуре около 310°С формируются ядра квантовых точек CdSe. Далее для наращивания полупроводниковой оболочки при 300°С вводят смесь диметилцинка, бис(триметилсилил)сульфида и триоктилфосфина несколькими равными порциями. Описанный способ позволяет получать квантовые точки CdSe/ZnS с высоким квантовым выходом - вплоть до 50% при комнатной температуре. Таким образом, частично устраняются недостатки, присущие предыдущему способу.
Недостатком способа является широкое распределение по размеру (12-15%) ядер и конечных квантовых точек, следовательно, низкая чистота цвета. Также способ подразумевает использование пирофорных соединений, что крайне небезопасно.
Другой способ получения полупроводниковых нанокристаллов включает высокотемпературный синтез ядер, содержащих халькогенид шестой группы и металл второй группы, в органическом растворителе (опубликованная заявка США US 20060275544). Полученные данным способом нанокристаллы обладают высоким квантовым выходом (до 50% флуоресценции в видимом диапазоне спектра) с относительно узким распределением по размеру (полуширина пика флуоресценции не превышает 40 нм).
Недостатком способа является необходимость применения токсичных, пирофорных и нестабильных реагентов, что вызывает необходимость использования специального оборудования и соблюдения специальных условий, что не подходит для крупномасштабного синтеза. В указанном способе используется диметилкадмий - крайне токсичный, пирофорный, дорогой и нестабильный при комнатной температуре реагент (Murray et al., J.Am.Chem. Soc. 1993, 115, 8706-8715; Barbera-Guillem et al., U. S. Patent No. 6,179, 912; Peng et al., Nature 2000, 404, 69-61; Peng et al., J.Am.Chem. Soc. 1998, 120, 5343-5344). При температуре, необходимой для синтеза (340-360°С), диметилкадмий взрывается с высвобождением большого количества газа.
Недостатком способа также является то, что описанные выше методики не способны обеспечить монодисперсность квантовых точек: только CdSe можно синтезировать в относительно монодисперсном виде (Peng et al., JACS, 1998, 120, 10, 5343-5344) - путем контролирования концентрации мономеров в исходной реакционной смеси и регулирования времени роста кристаллов.
Известен способ получения полупроводниковых квантовых точек, включающий высокотемпературный синтез нанокристаллов из прекурсора халькогенида VI группы и прекурсора металла II или IV группы с использованием органического растворителя и модификатора поверхности (US 7105051, публикация 2006 г., МПК С30В 25/12). Это изобретение лучше предшественников, так как там не используются органометаллические прекурсоры, которые токсичны и пирофорны. При этом получаются квантовые точки высокого качества, малого размера и с узким распределением по размеру. При синтезе используется некоординирующий растворитель.
Недостатком способа является то, что, несмотря на значительные успехи в совершенствовании оптических свойств КТ (квантовый выход, ширина пика флуоресценции), не удавалось добиться достаточной фотостабильности синтезируемых нанокристаллов. Предполагается, что при облучении полученных вышеописанными способами нанокристаллов УФ светом на воздухе произойдет значительное падение флуоресценции. Исключение - квантовые точки состава CdSe/ZnS, но при этом обязательно используются токсичные и пирофорные органометаллические прекурсоры. Это не позволяет проводить крупномасштабный синтез, что существенно снижает возможность широкого применения КТ в различных областях науки и техники.
Многие недостатки, указанные выше, например невозможность крупномасштабного производства, необходимость использования органометаллических прекурсоров, устраняются изобретением по опубликованной заявке США №20070295266, которое является наиболее близким аналогом заявляемого изобретения.
Известный способ получения полупроводниковых квантовых точек, взятый за прототип, включает высокотемпературный синтез ядер нанокристаллов из прекурсора халькогенида 6-й группы и прекурсора металла 2-й группы, с использованием органического растворителя и модификатора поверхности (заявка США №20070295266, класс С30В 13/02, 117/53, опубликована 27.12.2007 г.). В этом способе для повышения квантового выхода наращивается полупроводниковая оболочка, содержащая металл 2-й группы и халькогенид 6-й группы.
Недостатком данного способа является предполагаемая низкая фотостабильность получаемых квантовых точек, которая зависит в первую очередь от устойчивости связи координирующих лигандов с поверхностью наночастиц. Поверхность наночастиц очень напряженная, следствием чего является ее высокая реакционная способность и склонность к окислению. В вышеописанном методе синтеза используются поверхностно-активные вещества (триоктилфосфиноксид, гексадециламин и т.п.), которые не способны обеспечить устойчивую связь с поверхностью квантовых точек в течение длительного времени, что и приводит к фотоокислению последних и потере флуоресценции.
Полупроводниковые квантовые точки, синтезированные с использованием поверхностно-активного вещества, описанного в прототипе, диспергируются только в неполярных органических растворителях. Для осуществления перевода полупроводниковых квантовых точек в полярный растворитель необходимо изменить адсорбционный монослой на их поверхности. Производимая замена в адсорбционном монослое однополярного поверхностно-активного вещества на биполярное поверхностно-активное вещество требует дополнительных стадий обработки, приводя к значительному усложнению процесса синтеза и большим потерям флуоресценции.
Задачей данного изобретения является разработка способа, позволяющего получать полупроводниковые квантовые точки, обладающие высокой фотостабильностью и способные диспергироваться как в полярные, так и неполярные растворители без дополнительных стадий обработки, при сохранении или увеличении высокого квантового выхода.
Технический результат - повышение фотостабильности, обеспечение способности диспергироваться как в полярных, так и в неполярных растворителях без дополнительных стадий обработки.
Поставленная задача решается, а технический результат достигается тем, что в способе получения полупроводниковых квантовых точек на основе халькогенидов металлов II или IV группы, включающем синтез ядер нанокристаллов из прекурсора, содержащего халькоген, и прекурсора, содержащего металл II или IV группы, с использованием органического растворителя и модификатора поверхности, согласно изобретению, в качестве последнего используют (аминоалкил)триалкоксисиланы, синтез ядер осуществляют при постоянной температуре в пределах от 150 до 250°С в течение от 15 с до 1 ч и дополнительно проводят обработку реакционной смеси, содержащей ядра нанокристаллов, УФ-светом в течение 1÷10 мин и ультразвуком в течение 5÷15 мин.
Существенность отличительных признаков объясняется следующим образом:
- облучение УФ-светом уменьшает количество дефектов на поверхности полупроводниковой квантовой точки, а обработка ультразвуком позволяет достичь более высокой степени дезагрегации ядер полупроводниковых квантовых точек, что, в свою очередь, приводит к более однородному нарастанию оболочки. Это позволяет получать более однородные по размерам полупроводниковые квантовые точки с более высокой фотостабильностью по сравнению с полупроводниковыми квантовыми точками, синтезированными обычным способом;
- замена типичных поверхностно-активных веществ (триоктилфосфиноксид, гексадециламин и т.п.) на кремнийорганический модификатор поверхности, например (3-аминопропил)триметоксисилан, позволяет создать на поверхности полупроводниковой квантовой точки прочную кремнийорганическую оболочку, которая как предохраняет квантовые точки от окисления и воздействия гасителей флуоресценции, так и позволяет диспергировать нанокристаллы в полярные и неполярные растворители. Изначально кремнийорганическая оболочка гидрофобна, но при гидролизе в полярном растворителе переходит в гидрофильную форму благодаря наличию полярных гидроксильных групп на поверхности оболочки (Фиг 2).
В преимущественном варианте исполнения, когда наряду с фотостабильностью желательно получить повышенный квантовый выход, перед обработкой реакционной смеси УФ-светом и ультразвуком осуществляется наращивание полупроводниковой оболочки, содержащей халькогенид металла II группы с использованием (аминоалкил)триалкоксисиланов в качестве модификатора поверхности, при постоянной температуре в пределах от 150 до 230°С во временном интервале от 10 минут до 1 часа.
Повышенный квантовый выход и фотостабильность могут быть получены также, когда после обработки реакционной смеси УФ-светом и ультразвуком осуществляется наращивание полупроводниковой оболочки, содержащей халькогенид и металл II группы, с использованием (аминоалкил)триалкоксисиланов в качестве модификатора поверхности, при постоянной температуре в пределах от 150 до 230°С во временном интервале от 10 минут до 1 часа.
В отдельных случаях, в качестве прекурсоров металла II или IV группы используют прекурсоры цинка, кадмия, ртути, свинца.
В отдельных случаях, как при синтезе ядер, так и при наращивании полупроводниковой оболочки в качестве прекурсоров используют соли олеиновой, стеариновой и других жирных кислот, содержащие металлы II или IV группы, а также неорганические соли, например CdCl2.
В частном случае, в качестве прекурсора, содержащего халькоген, используют прекурсоры, содержащие серу, селен, теллур.
В частном случае, в качестве прекурсора, содержащего халькоген, используют его соединения с триоктилфосфиноксидом, трибутилфосфиноксидом, трифенилфосфиноксидом.
В частном случае, в качестве модификатора поверхности используют (3-аминопропил)триметоксисилан, (3-аминопропил)триэтоксисилан, а в качестве органического растворителя используют непредельные высококипящие углеводороды, например октадецен, сквален, а также дифенилы, терфенилы, дифениловый эфир или их производные.
В отдельных случаях, при синтезе ядра в дополнение к модификатору поверхности вводят гексадециламин.
Преимущества данного изобретения станут понятны из следующего детального примера его осуществления и прилагаемых фигур, на которых:
фиг.1 изображает схему синтеза квантовых точек структуры ядро-оболочка, где а) ввод прекурсора халькогенида VI группы в реакционную смесь при температуре 185°С, в результате реакции получение ядер полупроводниковых квантовых точек, покрытых (триаминоалкил)алкоксисиланом; б) очистка реакционной смеси, обработка УФ-светом и ультразвуком; в) ввод прекурсора металла IV группы и (триаминоалкил)алкоксисилана в реакционную смесь; г) ввод прекурсора халькогенида VI группы в реакционную смесь при температуре 240°С, в результате реакции получение полупроводниковых квантовых точек типа ядро-оболочка, покрытых (триаминоалкил)алкоксисиланом.
Условные обозначения:
1 - прекурсор металла (Cd, Zn, Hg, Pb, Cu, Mn);
2 - прекурсор халькогенида (Se, S, Те);
3 - (аминоалкил)триалкоксисилан;
4 - Me1Хал1;
5 - Me1Хал1/Me2Хал2;
фиг.2. - Гидролиз поверхности полупроводниковой квантовой точки, покрытой (аминоалкил)триалкоксисиланом, где:
R - алкильный радикал в аминоалкильной группе;
R' -алкильный радикал в алкоксисилановой группе.
Фиг.2 демонстрирует способность квантовых точек растворяться в воде;
фиг.3 - влияние природы модификатора поверхности на спектр флуоресценции квантовых точек;
фиг.4 - спектры флуоресценции полупроводниковых квантовых точек;
фиг.5 - спектры поглощения полупроводниковых квантовых точек;
фиг.6 - фотостабильность полупроводниковых квантовых точек.
Примеры
Пример 1. Получение ядер квантовых точек CdSe из стеарата кадмия
Для синтеза квантовых точек CdSe в 8 мл органического растворителя октадецена (90%) при комнатной температуре (25°С) вводится 0,068 г (0,1 ммоль) безводного стеарата кадмия (прекурсор кадмия) и 1 мл (3-аминопропил)триэтоксисилана. Реакционная смесь нагревается до 185°С и вводится 0,6 мл триоктилфосфин селенида (1 М раствор в триоктилфосфине). Полученные в ходе реакции ядра полупроводниковых квантовых точек охлаждаются до комнатной температуры (25°С). Реакционная смесь, содержащая ядра полупроводниковых квантовых точек, подвергается обработке УФ-светом1 (3 мин) и ультразвуком2 (10 мин).
[1Обработка УФ-светом осуществляется при помощи трансиллюминатора TFX-20 МС, длина волны 312 нм, 90 Вт;
2Обработка ультразвуком осуществляется при помощи ультразвуковой мойки Euronda, акустическая мощность - 40 Вт, рабочая частота - 50 кГц.]
Далее полученные квантовые точки диспергируются в неполярный или полярный растворитель.
Спектр флуоресценции квантовых точек из примера 1 приведен на Фиг.4, где 3 соответствует данным по квантовым точкам, полученным в соответствии с примером 1 изобретения.
Спектры поглощения кадмийсодержащих квантовых точек приведены на Фиг.5.
Спектр флуоресценции квантовых точек из примера 1 приведен на Фиг.3, где 2 соответствует данным по квантовым точкам, полученным в соответствии с примером 1 изобретения.
Анализ фотостабильности квантовых точек из примера 1 приведен на Фиг.6, где 1 соответствует данным по квантовым точкам, полученным в соответствии с примером 1 изобретения.
Пример 2. Получение ядер квантовых точек CdSe из стеарата кадмия
Выполняется аналогично примеру 1, но вместе с (3-аминопропил)триэтоксисиланом в органический растворитель на первоначальной стадии синтеза а) вводится гексадециламин.
Спектр флуоресценции квантовых точек из примера 2 приведен на Фиг.3, где 1 соответствует данным по квантовым точкам, полученным в соответствии с примером 2 изобретения.
Спектры поглощения кадмийсодержащих квантовых точек приведены на Фиг.5.
Пример 3. Получение ядер квантовых точек CdS из стеарата кадмия
Выполняется аналогично примеру 1, но вместо прекурсора селена на стадии а) Фиг.1 вводится прекурсор серы.
Спектр флуоресценции квантовых точек из примера 3 приведен на Фиг.4, где 1 соответствует данным по квантовым точкам, полученным в соответствии с примером 3 изобретения.
Спектры поглощения кадмийсодержащих квантовых точек приведены на Фиг.5.
Анализ фотостабильности данных полупроводниковых квантовых точек приведен на Фиг.6, где 2 соответствует данным по квантовым точкам, полученным в соответствии с примером 3 изобретения.
Пример 4. Получение ядер квантовых точек CdSe из стеарата кадмия
Выполняется аналогично примеру 2, но вместо органического растворителя октадецена используется дифениловый эфир.
Спектры поглощения кадмийсодержащих квантовых точек приведены на Фиг.5.
Спектр флуоресценции квантовых точек из примера 4 приведен на Фиг.4, где 6 соответствует данным по квантовым точкам, полученным в соответствии с примером 4 изобретения.
Пример 5. Получение ядер квантовых точек ZnSe из стеарата цинка
Выполняется аналогично примеру 1, но вместо прекурсора кадмия берется прекурсор цинка.
Спектр флуоресценции квантовых точек из примера 5 приведен на Фиг.4, где 2 соответствует данным по квантовым точкам, полученным в соответствии с примером 5 изобретения.
Пример 6. Получение ядер квантовых точек PbSe из стеарата свинца
Выполняется аналогично примеру 2, но вместо прекурсора кадмия берется прекурсор свинца.
Спектр флуоресценции квантовых точек из примера 6 приведен на Фиг.4, где 10 соответствует данным по квантовым точкам, полученным в соответствии с примером 6 изобретения.
Пример 7. Получение ядер квантовых точек CdSe из хлорида кадмия
Выполняется аналогично примеру 1, но в качестве прекурсора кадмия берется безводный хлорид кадмия.
Спектры поглощения кадмийсодержащих квантовых точек приведены на Фиг.5.
Спектр флуоресценции квантовых точек из примера 7 приведен на Фиг.4, где 9 соответствует данным по квантовым точкам, полученным в соответствии с примером 7 изобретения.
Пример 8. Получение ядер квантовых точек CdSe из хлорида кадмия
Выполняется аналогично примеру 7, но смесь нагревается до температуры 220°С.
Спектр флуоресценции квантовых точек из примера 8 приведен на Фиг.4, где 8 соответствует данным по квантовым точкам, полученным в соответствии с примером 8 изобретения.
Спектры поглощения кадмийсодержащих квантовых точек приведены на Фиг.5.
Пример 9. Получение ядер квантовых точек CdSe из хлорида кадмия
Выполняется аналогично примеру 7, но на стадиях получения ядер полупроводниковых квантовых точек берется соотношение Cd:Se, как 1:2.
Спектр флуоресценции квантовых точек из примера 9 приведен на Фиг.4, где 7 соответствует данным по квантовым точкам, полученным в соответствии с примером 9 изобретения.
Спектры поглощения кадмийсодержащих квантовых точек приведены на Фиг.5.
Пример 10. Получение ядер квантовых точек CdSe из олеата кадмия
Выполняется аналогично примеру 1, но в качестве прекурсора кадмия берется олеат кадмия.
Спектр флуоресценции квантовых точек из примера 10 приведен на Фиг.4, где 5 соответствует данным по квантовым точкам, полученным в соответствии с примером 10 изобретения.
Спектры поглощения кадмийсодержащих квантовых точек приведены на Фиг.5.
Пример 11. Получение квантовых точек типа ядро/оболочка CdSe/ZnSe
В полученную по примеру 1 реакционную смесь с ядрами полупроводниковых квантовых точек при комнатной температуре (25°С) вводится 0,072 мг (0,17 ммоль) ундецилената цинка (98%). Далее для приготовления полупроводниковых квантовых точек типа ядро-оболочка выполняются следующие стадии: а) после растворения ундецилената цинка (прекурсора цинка) при температуре 150°С охлаждение реакционной смеси до комнатной температуры; б) добавление (3-аминопропил)триэтоксисилана к реакционной смеси при комнатной температуре с последующим нагреванием (до 240°С); в) после добавления 0,17 мл триоктилфосфин селенида (1 М раствор в триоктилфосфине) и реакции охлаждение реакционной смеси до комнатной температуры.
Спектр флуоресценции квантовых точек из примера 11 приведен на Фиг.4, где 4 соответствует данным по квантовым точкам, полученным в соответствии с примером 11 изобретения.
Спектры поглощения кадмийсодержащих квантовых точек приведены на Фиг.5.
Анализ фотостабильности данных полупроводниковых квантовых точек приведен на Фиг.6, где 3 соответствует данным по квантовым точкам, полученным в соответствии с примером 11 изобретения.
Примечание. Для исследования фотостабильности использовалось облучение в течение 30 минут импульсным твердотельным Nd:YAG лазером модели FTSS 355-50 с длиной волны 355 нм, удельной мощностью излучения от 2,5 до 7,5 мВт/см2 и частотой импульсов 1 кГц.
3Для квантовых точек одного химического состава (например, CdSe) фотостабильность и квантовый выход флуоресценции варьируются в пределах погрешности измерений.
4«+» - возрастание интенсивности флуоресценции, «-»- падение интенсивности флуоресценции.
5Данные для прототипа отсутствуют.
6Анализ фотостабильности данных полупроводниковых квантовых точек приведен на Фиг.6, где 6 соответствует данным по квантовым точкам, полученным в соответствии со способом получения квантовых точек CdSe по способу прототипа.
7Анализ фотостабильности данных полупроводниковых квантовых точек приведен на Фиг.6, где 4 соответствует данным по квантовым точкам, полученным в соответствии со способом получения квантовых точек CdS по способу прототипа.
8Анализ фотостабильности данных полупроводниковых квантовых точек приведен на Фиг.6, где 5 соответствует данным по квантовым точкам, полученным в соответствии со способом получения квантовых точек CdSe/ZnSe по способу прототипа.
Из таблицы следует, что в сравнении с прототипом способ получения по изобретению обеспечивает улучшение свойств фотостабильности при сохранении квантового выхода и способности диспергироваться как в полярных, так и в неполярных растворителях, в отличие от прототипа.
Заявленный способ позволяет получать полупроводниковые квантовые точки типов ядро и ядро-оболочка, обладающие высокой фотостабильностью и способные диспергироваться в различные растворители без дополнительных стадий обработки, при сохранении заданных оптических свойств. Способ масштабируем до субкилограммовых количеств. Квантовые точки, полученные описанным способом, могут быть использованы для производства фотодетекторов в инфракрасной области, солнечных батарей, сверхминиатюрных светодиодов, источников белого света, одноэлектронных транзисторов и нелинейно-оптических устройств, а также в медицине в качестве оптических сенсоров, флуоресцирующих маркеров, фотосенсибилизаторов в медицине.
Изобретение относится к получению полупроводниковых квантовых точек типов ядро и ядро-оболочка методом коллоидного синтеза, которые могут быть использованы в производстве различных люминесцентных материалов, а также в качестве основы для производства сверхминиатюрных светодиодов, источников белого света, одноэлектронных транзисторов, нелинейно-оптических устройств, фоточувствительных и фотогальванических устройств. Способ получения полупроводниковых квантовых точек на основе халькогенидов металлов II или IV группы включает синтез ядер нанокристаллов из прекурсора, содержащего халькоген, и прекурсора, содержащего металл II или IV группы, с использованием органического растворителя и модификатора поверхности, в качестве которого используют (аминоалкил)триалкоксисиланы. Синтез ядер осуществляют при постоянной температуре в пределах от 150 до 250°С в течение от 15 с до 1 часа и дополнительно проводят обработку реакционной смеси, содержащей ядра нанокристаллов, УФ-светом в течение 1÷10 мин и ультразвуком в течение 5÷15 мин. Технический результат заключается в повышении фотостабильности полупроводниковых квантовых точек до 34%, способности диспергироваться как в неполярных, так и в полярных растворителях, при сохранении и увеличении квантового выхода. 8 з.п. ф-лы, 1 табл., 6 ил.