Код документа: RU2763723C1
Изобретение относится к способам приготовления катализаторов гидроочистки, предназначенных для переработки дизельного топлива с высоким содержанием вторичных фракций.
Гидроочистка дизельных фракций - один из ключевых процессов переработки нефтяных фракций. В настоящее время к прямогонным дизельным фракциям добавляют фракции вторичных процессов, например, газойли коксования, с целью увеличения глубины переработки нефти. Это приводит к утяжелению углеводородного состава дизельной фракции, поступающей на переработку, а также к увеличению содержания сера- и азотсодержащих соединений. Добавление вторичных фракций требует работы катализатора при более высокой температуре. В связи с этим чрезвычайно актуальной задачей является разработка катализаторов гидроочистки с более высокой активностью в переработке дизельного топлива с высоким содержанием вторичных фракций.
Известны различные способы приготовления нанесенных катализаторов гидроочистки углеводородного сырья, однако общим недостатком для них является низкая активность в превращении серосодержащих соединений.
Чаще всего для проведения гидрообессеривания нефтяного сырья используют катализаторы, содержащие оксиды кобальта и молибдена, нанесенные на оксид алюминия. Так известен катализатор гидрообессеривания [RU 2002124681, C10G45/08, B01J23/887, 10.05.2004], содержащий в своем составе оксид кобальта, оксид молибдена и оксид алюминия, отличающийся тем, что имеет соотношение компонентов, мас.%: оксид кобальта 3,0-9,0, оксид молибдена 10,0-24,0 мас.%, оксид алюминия остальное, удельную поверхность 160-250 м2/г, механическую прочность на раздавливание 0,6-0,8 кг/мм2. При этом процесс гидроочистки ведут при температуре 310-340°С, давлении 3,0-5,0 МПа, при соотношении водород/сырье 300-500 нм3/м3 и объемной скорости подачи сырья 1,0-4,0 ч-1. Основным недостатком такого катализатора гидроочистки является высокое содержание серы в получаемых продуктах.
В последние годы для приготовления катализаторов гидроочистки используют метод нанесения активных металлов на уже сформованный носитель. В качестве носителя чаще всего используют оксид алюминия с определенным размером и формой гранул и определенными текстурными характеристиками. Носитель часто модифицируют различными добавками. При этом модифицирующие добавки вводят в носитель либо до стадии его формования, путем соосаждения модификаторов и алюминия из совместных растворов [Journal of Catalysis 115 (1989) 441-451, Journal of Materials Research 33 (2018) 3570-3579, Catalysis Today 133-135 (2008) 267-276], либо путем смешения гидроксида алюминия с модифицирующим соединением на стадии приготовления пасты для формовки [RU 2319543, B01J23/88, 21.09.2006], либо вводят добавку методом пропитки в сформованный носитель, с последующей сушкой и прокалкой [Catalysis Today 107-108 (2005) 551-558; Energy & Fuels 25 (2011) 3100-3107].
Введение активных металлов, чаще всего Co, Ni, Mo и W, в состав катализатора осуществляют путем пропитки сформованного носителя водными растворами их солей. При этом могут использовать как раздельное нанесение активных металлов путем пропитки в несколько стадий [RU 2242501, C10G45/08, 20.12.2004; RU 2246987, B01J37/02, 27.02.2005], так и их нанесение из совместных растворов, стабилизированных различными агентами [RU 2073567, B01J37/02, 05.10.1995; RU 2216404, B01J37/02, 20.11.2003; RU 2306978, B01J23/88, 27.09.2007; RU 95117374, B01J37/02, 20.11.1996].
С целью повышения гидрообессеривающей активности катализаторов при их приготовлении используют носитель с улучшенными текстурными характеристиками, при этом удельная поверхность катализатора достигает 300 м2/г, а средний диаметр пор лежит в интервале 8-11 нм, что обеспечивает хороший доступ серосодержащих молекул к активным центрам катализатора. Так, известен катализатор [RU 2192923, C10G45/08, B01J27/188, B01J35/10, 20.11.2002] на основе оксида алюминия, который содержит в пересчете на весовое содержание оксида: 2-10 мас.% оксида кобальта СоО, 10-30 мас.% оксида молибдена МоО3 и 4-10 мас.% оксида фосфора Р2О5, с площадью поверхности по методу БЭТ в интервале 100-300 м2/г и средним диаметром пор в интервале 8-11 нм.
Известен способ приготовления, позволяющий получить катализатор гидрообессеривания дизельной фракции [RU 2313392, B01J37/02, 27.12.2007], имеющий объем пор 0,3-0,7 мл/г, удельную поверхность 200-350 м2/г и средний диаметр пор 9-13 нм, содержащий следующие компоненты, мас.%: соединения кобальта с концентрацией 2,5-7,5 в пересчете на СоО, соединения молибдена с концентрацией 12-25 в пересчете на МоО3, лимонную кислоту с концентрацией 15-35, соединения бора 0,5-3,0 в пересчете на В2О3, оксид алюминия Al2O3 - остальное, при этом кобальт, молибден, лимонная кислота и бор могут входить в состав комплексных соединений различной стехиометрии.
Известен способ приготовления катализатора гидроочистки [RU 2472585, B01J23/882, 20.01.2013], содержащего, мас.%: Мо - 8,0-15,0; Со или Ni - 2,0-5,0; S - 5,0-15,0; В - 0,5-2,0; С - 0,5-7,0; Al2O3 - остальное, при этом носитель содержит, мас.%: В - 0,7-3,0, Al2O3 - остальное, и имеет удельную поверхность 170-300 м2/г, объем пор 0,5-0,95 см3/г, средний диаметр пор 7-22 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм, имеющие механическую прочность 2,0-2,5 кг/мм.
Общим недостатком для вышеперечисленных способов приготовления является низкая активность получаемых катализаторов в превращении серосодержащих соединений.
Наиболее близким к предлагаемому техническому решению является описанный в [RU 2732243, B01J37/02; B01J37/08; C10G45/04, 14.09.2020] способ приготовления катализатора, который заключается в пропитке носителя, содержащего в пересчете на оксиды неметаллов SiO2 - 0,1-20 мас.% и B2O3 - 0-10 мас.%, натрий - не более 0,03 мас.%, γ- и χ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе составляет (0-40):(100-60) мас.%, водным раствором, одновременно содержащим смесь комплексных соединений [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2], Co2[H2P2Mo5O23] и (NH4)4[Mo4(C6H5O7)2O11], с последующей сушкой, при этом концентрации компонентов раствора обеспечивают получение катализатора, который включает в свой состав, мас.%: [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] - 11,42-18,9, Co2[H2P2Mo5O23] - 12,1-22,6 и (NH4)4[Mo4(C6H5O7)2O11] - 3,25-4,73, носитель - остальное; с последующим сульфидированием и получением катализатора состава, мас.%: 11-14 Mo, 2-4 Co, 0,8-1,5 P, 9,0-11,4 S; носитель - остальное; при этом носитель содержит, мас.%: SiO2 - 0,01-20,0 и B2O3- 0-10; Al2O3 - остальное.
Основным недостатком известного катализатора является то, что он имеет неоптимальный химический состав для превращения дизельных фракций с повышенным содержанием вторичных углеводородных фракций, содержащих непредельные соединения. Это приводит к более быстрой дезактивации катализатора.
Изобретение решает задачу разработки эффективного способа приготовления катализатора гидроочистки дизельного топлива с высоким содержанием вторичных углеводородных фракций.
Технический результат - способ приводит к получению катализатора, имеющего высокую активность и стабильность в целевых реакциях, протекающих при гидроочистке дизельного топлива с высоким содержанием вторичных фракций.
Задача решается способом приготовления катализатора гидроочистки дизельного топлива с повышенным содержанием вторичных фракций, в котором катализатор готовят пропиткой носителя, содержащего 0,001-0,05 мас.% Na, а также изолированные атомы La на поверхности со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 2-50 атомов на 10 нм2 поверхности и соотношением атомов Al к числу атомов La, равным 50-10000, состоящего из низкотемпературных форм оксида алюминия γ- и χ-Al2O3 в соотношениях (50-95):(50-5) мас.%, водным раствором, одновременно содержащим смесь комплексных соединений [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23], с последующей сушкой, при этом концентрации компонентов раствора обеспечивают получение катализатора, который включает в свой состав, мас.%: [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] - 6,0-12,0, Co2[H2P2Mo5O23] - 21,0-30,0, носитель - остальное; с последующим сульфидированием по известным методикам. Используют пропитку носителя по влагоемкости водным раствором, одновременно содержащим смесь комплексных соединений [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23], при этом пропитку проводят при температуре 25-80°С в течение 15-60 мин при периодическом перемешивании. После пропитки катализатор сушат на воздухе при температуре 100-200°С в течение 2-4 ч. после сульфидирования по известным методикам катализатор содержит, мас.%: Mo - 10.7-13.5; Co - 3.5-4.2; S - 9.0-11.5; P - 1.4-1.9; носитель - остальное, при этом носитель содержит 0,001-0,05 мас.% Na, имеет на поверхности изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 2-50 атомов на 10 нм2 поверхности и соотношением атомов Al к числу атомов La, равным 50-10000, причем носитель состоит из низкотемпературных форм оксида алюминия γ- и χ-Al2O3 в соотношениях (50-95):(50-5) мас.%. Полученный катализатор имеет удельную поверхность 120-200 м2/г, объем пор 0,30-0,50 см3/г, средний диаметр пор 8-13 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.
Выход содержания компонентов катализатора за заявляемые границы приводит к снижению активности катализатора.
Выход соотношения числа атомов Al к числу атомов La на поверхности носителя за заявленные рамки, с одной стороны, приводит к неравномерному диспергированию атомов лантана по поверхности носителя, с другой - препятствует образованию связи La-O-Al, и приводит к снижению получаемого на его основе катализатора гидроочистки.
Наличие изолированных атомов лантана на поверхности носителя подтверждают методом кольцевой визуализации темного поля в сканирующем просвечивающем электронном микроскопе (HAADF-STEM). Поверхностная плотность атомов La в данном изобретении составляет 5-50 атомов на 10 нм2.
Отношение числа атомов Al к числу атомов La, находящееся в носителе в диапазоне от 50 до 10000, подтверждают спектрами, полученными методом энергодисперсионной рентгеновской спектроскопии (метод EDX).
Сущность данного метода заключается в том, что с помощью пучка электронов определенной энергии возбуждают атомы изучаемого образца, которые при этом излучают характерное для каждого химического элемента рентгеновское излучение, так называемое характеристическое рентгеновское излучение. При этом вывод о количественном и качественном составе образца делают на основе исследования энергетического спектра такого излучения.
Наличие смешанного фазового состава оксида алюминия, состоящего из χ-Al2O3 и γ-Al2O3 в разных пропорциях, подтверждают данными рентгенофазового анализа (РФА). Количественный анализ фазового состава носителя для катализатора гидроочистки проводят по предварительно построенным градуировочным графикам. При анализе системы γ- и χ-Al2O3 опорные линии соответствуют 42,6° (γ) и 45,9° (χ).
Технический результат достигается следующим:
1. Химический состав катализатора, полученного заявляемым способом, обуславливает высокую активность в целевых реакциях, протекающих при гидроочистке дизельного топлива c повышенным содержанием вторичных фракций. Наличие в составе носителя катализатора изолированных атомов La со средним размером 0,1 нм, состоящих в химической связи La-O-Al, с поверхностной плотностью 2-50 атомов на 10 нм2 поверхности и соотношением атомов Al к числу атомов La равным 50-10000, и низкотемпературных форм оксида алюминия - γ- и χ-Al2O3 - в следующих соотношениях, мас.%: (50-95):(50-5) обеспечивает устойчивость катализатора к процессам спекания и коксования в условиях реакции, минимизации нежелательного химического взаимодействия между активными металлами (Co и Mo) и носителем, и селективное получение наиболее активного в гидроочистке сульфидного компонента - CoMoS фазы типа II, который обеспечивает высокую активность катализатора в превращении серо- и азотсодержащих компонентов сырья.
2. Введение в состав получаемого катализатора смеси комплексных соединений [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23] препятствует их кристаллизации на стадии сушки и обеспечивает дальнейшее формирование в катализаторе, при его эксплуатации в гидроочистке, высокодисперсных частиц наиболее активного компонента - CoMoS фазы типа II.
3. Введение в состав катализатора изолированных атомов La со средним размером 0,1 нм, состоящих в химической связи La-O-Al, с поверхностной плотностью 2-50 атомов на 10 нм2 поверхности и соотношением атомов Al к числу атомов La равным 50-10000, и низкотемпературных форм оксида алюминия γ- и χ-Al2O3 в соотношениях (50-95):(50-5) мас.% способствует достижению текстурных характеристик катализатора, обеспечивающих доступ всех подлежащих превращению молекул сырья к активному компоненту.
4. Заявляемые условия приготовления - пропитка по влагоемкости при температуре 25-70°С в течение 25-60 мин при периодическом перемешивании, сушка на воздухе при температуре 100-200°С в течение 2-4 ч в совокупности с используемыми концентрациями компонентов пропиточных растворов и характеристиками используемого носителя - обеспечивают получение катализатора, имеющего оптимальный химический состав, мас.%: [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] - 6,0-12,0, Co2[H2P2Mo5O23] - 21,0-30,0; при этом носитель содержит 0,001-0,05 мас.% Na, имеет на поверхности изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 2-50 атомов на 10 нм2 поверхности и соотношением атомов Al к числу атомов La равным 50-10000, причем носитель состоит из низкотемпературных форм оксида алюминия γ- и χ-Al2O3 в следующих соотношениях, мас.%: (50-95):(50-5).
Описание предлагаемого технического решения.
Готовят носитель, содержащий изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 2-50 атомов на 10 нм2 поверхности и соотношением атомов Al к числу атомов La, равным 50-10000, причем носитель содержит 0,001-0,05 мас.% Na и состоит из низкотемпературных форм оксида алюминия γ- и χ-Al2O3 в соотношениях, мас.%: (50-95):(50-5).
Берут навеску продукта быстрой термической обработки гидраргиллита (ПБТОГ), имеющего удельную площадь поверхности не менее 200 м2/г и отвечающего следующим требованиям, мас.%:
- доля гидраргиллита (гиббсита), не более 3;
- доля бемита, не более 10;
- доля разупорядоченного χ-подобного Al2O3 (рентгеноаморфная или аморфная фаза, или ρ-Al2O3), не менее 87;
- доля потери массы при прокаливании при 800°С, в пределах 6-10;
- доля оксида натрия (Na2O), не более 0,3.
Например, может быть использован продукт ЦТА (ТУ 2175-040-03533913-2007), получаемый в центробежном реакторе барабанного типа ЦЕФЛАР [RU 2264589, F26B7/00, 20.11.2005], либо термоактивированный гидроксид алюминия ТГА (ТУ 24.42.12-146-60201897-2018), получаемый в трубчатых реакторах в потоке горячих газов [RU 2219128, C01F 7/44, 20.12.2003]. Допускается использование аналогичного продукта, выпускаемого по иным ТУ, но обязательно отвечающего вышеперечисленным требованиям.
Навеску исходного материала измельчают на мельнице (шаровой, планетарной, струйной или любой другой) до агломератов частиц с объемным средним диаметром 5-25 мкм. В ряде случаев ПБТОГ используют в исходном состоянии, т.е. без измельчения, тогда фракционный состав агломератов частиц сохраняется.
Навеску ПБТОГ гидратируют при перемешивании в течение 2-4 ч в нагретых до 50±5°C слабо концентрированных растворах азотной кислоты (кислотный модуль не более 0,1). После чего полученную суспензию фильтруют под вакуумом и промывают либо дистиллированной водой, либо технически подготовленной водой, не содержащей натрия. В результате получают влажный осадок - кек, содержащий не более 0,05 мас.%, но не менее 0,001 мас.% натрия, в пересчете на сухое вещество.
Гидротермальную обработку кека проводят в автоклаве в водных растворах азотной кислоты с добавлением на начальном этапе заданного количества лантансодержащего источника, преимущественно азотнокислого лантана, при температуре суспензии 140-180°C в течение 6-16 ч. После завершения гидротермальной обработки суспензию охлаждают до заданной температуры, но не выше 90°С, автоклав разгружают, содержимое сосуда репульпируют дистиллированной или технически подготовленной водой до получения псевдобемитсодержащей суспензии, пригодной для распылительной сушки.
Далее проводят сушку на распылительной сушилке при температуре воздуха на входе в сушилку не выше 350°C и непрерывном перемешивании репульпированной суспензии. Причем сушку ведут как при помощи пневматических распылительных форсунок, так и при помощи жидкостных (механических) форсунок.
Готовый порошок гидроксида алюминия выгружают из приемной емкости (стакана) циклонного пылеуловителя распылительной сушилки.
Далее готовят пластичную массу методом смешения и пептизации полученного порошка в смесителе с Z-образными лопастями в присутствии водного раствора аммиака.
Готовую пластичную массу перегружают из смесителя в экструдер и продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.
Затем проводят термическую обработку экструдатов, включающую в себя предварительную стадию сушки. Экструдаты выдерживают в сушильном шкафу при температуре (120±10)°C в течение 2 ч. Термическую обработку проводят в муфельной печи с подачей осушенного воздуха в камеру печи. Экструдаты в фарфоровой чашке помещают в печь и прокаливают при температуре (550±10)°C в течение 4 ч.
В результате получают носитель для катализатора гидроочистки, который содержит на своей поверхности изолированные атомы лантана размером порядка 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 5-50 атомов на 10 нм2 поверхности и отношением числа атомов Al к числу атомов La, равным 50-10000, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (50-95):(50-5); характеризуется удельной площадью поверхности 200-300 м2/г, объемом пор - 0,5-0,85 см3/г, средним диаметром пор - 7-13 нм и представляет собой гранулы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Носитель так же содержит примесный натрий в количестве 0,001-0,05 мас.%, причем натрий входит в состав низкотемпературных форм оксида алюминия γ- и χ-Al2O3.
С использованием данного носителя готовят нанесенный катализатор. Сначала готовят пропиточный раствор, содержащий в заданных соотношениях смесь комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23]. Для этого отвешивают заданные количества оксида молибдена MoO3, кобальта гидроксида Co(OH)2, кислоты лимонной моногидрата и кислоты ортофосфорной. Мерным цилиндром отмеряют заданное количество воды дистиллированной. В колбу наливают отмеренное количество воды и помещают якорь магнитной мешалки. Колбу помещают на нагревательную поверхность магнитной мешалки с подогревом. Устанавливают скорость вращения мешалки 300 об/мин и температуру раствора 70°C. Загружают в колбу отмеренное количество кислоты лимонной и перемешивают при визуальном контроле. Затем в колбу к раствору кислоты лимонной добавляют навески кобальта гидроксида, оксида молибдена и кислоты ортофосфорной при постоянном перемешивании. Раствор перемешивают до образования однородного прозрачного раствора рыже-розового цвета, содержащего смесь комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23] и не содержащего мути, пузырьков и пены. Раствор содержит кобальт и молибден в форме смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23].
Приготовленный раствор переливают в тарированный мерный цилиндр, после чего объем раствора доводят до заданного количества добавлением дистиллированной воды.
Полученным раствором пропитывают модифицированный носитель, при этом используют пропитку носителя по влагоемкости. Пропитку проводят при температуре 25-70°C в течение 15-60 мин при периодическом перемешивании. После пропитки катализатор сушат на воздухе при температуре 100-200°C.
В результате, получают катализатор, содержащий, мас.% [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] - 6,0-12,0, Co2[H2P2Mo5O23] - 21,0-30,0; носитель - остальное; при этом носитель дополнительно содержит на своей поверхности изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 2-50 атомов на 10 нм2 поверхности и соотношением атомов Al к числу атомов La, равным 50-10000, причем носитель состоит из низкотемпературных форм оксида алюминия γ- и χ-Al2O3 в соотношениях (50-95):(50-5) мас.%. Катализатор имеет удельную поверхность 120-200 м2/г, объем пор 0.30-0.55 см3/г, средний диаметр пор 8-13 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1.0-1.6 мм и длиной до 20 мм. После сульфидирования по известным методикам катализатор содержит, мас.%: Mo - 10.7-13.5; Co - 3.5-4.2; S - 9.0-11.5; P - 1.4-1.9, носитель - остальное; при этом носитель содержит на своей поверхности изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 2-50 атомов на 10 нм2 поверхности и соотношением атомов Al к числу атомов La, равным 50-10000, причем носитель состоит из низкотемпературных форм оксида алюминия γ- и χ-Al2O3 в соотношениях, мас.%: (50-95):(50-5).
Сущность изобретения иллюстрируется следующими примерами.
Пример 1 согласно известному решению [RU 2732243, B01J37/02; B01J37/08; C10G45/04, 14.09.2020].
Носитель готовят следующим образом. Берут 150 г порошкообразного продукта ПБТОГ, измельчают на шаровой мельнице до агломератов частиц со средним объемным диаметром 5-25 мкм. Далее измельченный порошок гидратируют при непрерывном перемешивании в слабо концентрированном (0,3 мас.%) растворе азотной кислоте при температуре 50°С в течение 2 ч. Затем суспензию фильтруют под вакуумом с использованием воронки Бюхнера и колбы Бюнзена через фильтровальную бумагу типа «Синяя лента» и промывают дистиллированной водой до остаточного содержания натрия в пересчете на сухое твердое вещество - 0,03 мас.%. В результате получают влажный осадок - кек. Кек загружают в автоклав, в который добавляют 1,5% раствор азотной кислоты до достижения pH суспензии 1,0-2,0. К суспензии добавляют при перемешивании 0,25 мл жидкости полиметилсилоксановой марки ПМС-50 (ГОСТ 13032-77). Сосуд автоклава нагревают до 160°С и выдерживают в течение 10 ч. Далее сосуд автоклава охлаждают до комнатной температуры. Суспензию выгружают и сушат в распылительной сушилке при температуре теплоносителя на входе в сепаратор не выше 350°С до получения сухого порошкообразного псевдобемита. Навеску 150 г порошка псевдобемита помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5%-ным водным раствором аммиака, после чего экструдируют при давлении 50-60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде круга с диаметром описанной окружности 1 мм. Сформованные гранулы сушат при температуре 120°C и прокаливают при температуре 550°C. В результате получают носитель, содержащий, мас.%: соединение кремния в пересчете на оксид неметалла SiO2 - 0,1, натрий - 0,03, γ-Al2O3 - остальное. Далее готовят раствор смеси комплексов [Co(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], Co2[H2P2Mo5O23] и (NH4)4[Mo4(C6H5O7)2O11], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 15.1 г лимонной кислоты, 23.8 г. оксида молибдена МоO3, 6,7 г кобальта(II) гидроксида Со(ОН)2 и 2,5 мл. ортофосфорной кислоты (85%). После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 16,55 г [Co(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], 15.06 г Co2[H2P2Mo5O23] и 4,17 г (NH4)4[Mo4(C6H5O7)2O11]. 100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Co(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], Co2[H2P2Mo5O23] и (NH4)4[Mo4(C6H5O7)2O11] при 60°С в течение 30 мин. Затем катализатор сушат на воздухе 4 ч при 100°С.
Прокаленный катализатор содержит, мас.%: 18,0 МоО3, 4,1 СоО, Р2О5 - 2.3, носитель - остальное; при этом носитель содержит SiO2 - 0,1 мас.%, γ-Al2O3. Далее катализатор сульфидируют по одной из известных методик. В данном случае катализатор сульфидирован прямогонной дизельной фракцией, содержащей дополнительно 1,5 мас.% сульфидирующего агента - диметилдисульфида (ДМДС) - при объемной скорости подачи сульфидирующей смеси 2 ч-1 и соотношении Н2/сырье = 300 при температуре не более 340°С. Затем катализатор тестируют в гидроочистке смесевого дизельного топлива, приготовленного путем смешения фракций, об.%: 83 - прямогонная дизельная фракция; 13 - легкий газойль каталитического крекинга, 4 - легкий газойль замедленного коксования. Сырье содержит 0,45 мас.% серы, 250 ppm азота, имеет плотность 0,879 г/см3, интервал кипения - 186-380°С, Т95 - 405°С. Условия гидроочистки: объемная скорость подачи сырья 2,3 ч-1, соотношение Н2/сырье = 500 нм3 Н2/м3 сырья, давление 4,0 МПа, стартовая температура 350°С. Далее температуру скачками по 10°С в сутки поднимают до 370°С. В случае недостижения остаточного содержания серы в получаемом дизельном топливе 10 ррм при 370°С, температуру скачками по 1°С поднимают до значения, при котором остаточное содержание серы в продукте гидроочистки становится равным 10 ppm. После сульфидирования катализатор содержит, мас.%: 12,0 Мо, 3,2 Со, 1,0 Р и 9.7 S, носитель - остальное; при этом носитель содержит SiO2 - 0,1 мас.%, γ-Al2O3 - остальное. Катализатор имеет удельную поверхность 145 м2/г, объем пор - 0,35 см3/г, средний диаметр пор - 9,0 нм, и представляет собой частицы с сечением в виде круга с диаметром описанной окружности 1,0 мм и длиной до 20 мм.
Примеры 2-9 иллюстрируют предлагаемое техническое решение.
Пример 2
Носитель для катализатора гидроочистки получают следующим образом. Берут 150 г порошкообразного продукта быстрой термической обработки гидраргиллита (ПБТОГ), измельчают на шаровой мельнице до агломератов частиц со средним объемным диаметром 5-25 мкм. Далее измельченный порошок гидратируют при непрерывном перемешивании в слабоконцентрированном (0,3 мас.%) растворе азотной кислоты при температуре 50±5°С в течение 2 ч.
Затем суспензию фильтруют под вакуумом с использованием воронки Бюхнера и колбы Бунзена через фильтровальную бумагу типа «Синяя лента» и промывают дистиллированной водой до остаточного содержания натрия 0,04 мас.%. В результате получают влажный осадок - кек.
Кек загружают в автоклав, в который добавляют 1,5% раствор азотной кислоты до достижения pH суспензии 1,0-2,0. К суспензии добавляют при перемешивании раствор лантана азотнокислого (ТУ 2013-036-469133-78-2019) в количестве 25 г. Сосуд автоклава нагревают до 180°С и выдерживают в течение 16 ч. Далее сосуд автоклава охлаждают до комнатной температуры.
Суспензию гидроксида алюминия выгружают и сушат в распылительной сушилке, используя пневматическую форсунку при температуре теплоносителя на входе в сепаратор 220-350°С.
Навеску 150 г полученного порошка гидроксида алюминия помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5%-ным водным раствором аммиака, после чего экструдируют при давлении 50,0-60,0 МПа через фильеру, обеспечивающую получение частицы с сечением в виде трилистника с диаметром описанной окружности 1,0 мм.
Сформованные гранулы сушат при температуре 120 °C и прокаливают при температуре 550°C в течение 4-х чв.
В результате получают носитель, содержащий изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 45-50 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 50; натрий - 0,05 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 50:50.
Далее готовят раствор смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 4.6 г лимонной кислоты C6H8O7, 9,8 г кобальта(II) гидроксида Co(OH)2, 30.5 г оксида молибдена MoO3 и 5.4 мл ортофосфорной кислоты (85%). После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 6.3 г [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и 30.1 г Co2[H2P2Mo5O23].
100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23] при 60°C в течение 30 мин. Затем катализатор сушат на воздухе 4 ч при 100°C.
Далее катализатор сульфидируют по известным методикам аналогично примеру 1. После сульфидирования катализатор содержит, мас.%: Мо - 13.5; Co - 4.2; P - 1.9; S - 11.3; носитель - остальное; при этом носитель содержит изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 45-50 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 50; натрий - 0.05 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 50:50. Катализатор имеет удельную поверхность 120 м2/г, объем пор 0,3 см3/г, средний диаметр пор 8,0 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0 мм и длиной до 20 мм.
Далее проводят гидроочистку смесевого дизельного топлива аналогично примеру 1.
Пример 3
Готовят носитель по примеру 2, только гидратацию порошка ПБТОГ проводят в течение 4 ч, а фильтрацию ведут технически подготовленной водой до остаточного содержания Na 0,001 мас.%. После этого к суспензии в сосуд автоклава добавляют раствор лантана азотнокислого в количестве 12,5 г, а сосуд нагревают до 140°С и выдерживают в течение 6 ч. Экструдирование проводят при давлении 50,0-60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде трилистника с диаметром 1,6 мм.
В результате получают носитель, содержащий изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 25-30 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 100; натрий - 0,001 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 31:69.
Далее готовят раствор смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 6.1 г лимонной кислоты C6H8O7, 9.1 г кобальта(II) гидроксида Co(OH)2, 27.4 г оксида молибдена MoO3 и 4.7 мл ортофосфорной кислоты (85%). После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 8.6 г [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и 27.1 г Co2[H2P2Mo5O23].
100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23] при 50°C в течение 30 мин. Затем катализатор сушат на воздухе 4 ч при 120°C.
Далее катализатор сульфидируют по известным методикам аналогично примеру 1. После сульфидирования катализатор содержит, мас.%: Мо - 12.6; Co - 4.0; P - 1.7; S - 10.5; носитель - остальное; при этом носитель содержит изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 25-30 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 100; натрий - 0.001 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 31:69. Катализатор имеет удельную поверхность 135 м2/г, объем пор 0,38 см3/г, средний диаметр пор 8,7 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм.
Далее проводят гидроочистку смесевого дизельного топлива аналогично примеру 1.
Пример 4
Готовят носитель по примеру 2, только к суспензии в сосуд автоклава добавляют раствор лантана азотнокислого в количестве 6,3 г, при этом сосуд автоклава выдерживают при температуре 140°С в течение 16 ч.
В результате получают носитель, содержащий изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 12-15 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 200; натрий - 0,05 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 25:75.
Далее готовят раствор смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 6.6 г лимонной кислоты C6H8O7, 8.1 г кобальта(II) гидроксида Co(OH)2, 24.5 г оксида молибдена MoO3 и 4.1 мл ортофосфорной кислоты (85%). После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 9.6 г [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и 24.1 г Co2[H2P2Mo5O23].
100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23] при 40°C в течение 60 мин. Затем катализатор сушат на воздухе 4 ч при 140°C.
Далее катализатор сульфидируют по известным методикам аналогично примеру 1. После сульфидирования катализатор содержит, мас.%: Мо - 11.6; Co - 3.7; P - 1.6; S - 9.8; носитель - остальное; при этом носитель содержит изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 12-15 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 200; натрий - 0.05 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 25:75. Катализатор имеет удельную поверхность 143 м2/г, объем пор 0,40 см3/г, средний диаметр пор 10.1 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0 мм и длиной до 20 мм.
Далее проводят гидроочистку смесевого дизельного топлива аналогично примеру 1.
Пример 5
Готовят носитель по примеру 4, только к суспензии в сосуд автоклава добавляют раствор лантана азотнокислого в количестве 3,1 г. При этом готовую суспензию гидроксида алюминия после гидротермальной обработки охлаждают до 90°С.
В результате получают носитель, содержащий изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 8-10 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 400; натрий - 0,05 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 19:81.
Далее готовят раствор смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 7.9 г лимонной кислоты C6H8O7, 7.5 г кобальта(II) гидроксида Co(OH)2, 21.8 г оксида молибдена MoO3 и 3.5 мл ортофосфорной кислоты (85%). После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 11.9 г [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и 21.1 г Co2[H2P2Mo5O23].
100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23] при 30°C в течение 15 мин. Затем катализатор сушат на воздухе 4 ч при 160°C.
Далее катализатор сульфидируют по известным методикам аналогично примеру 1. После сульфидирования катализатор содержит, мас.%: Мо - 10.7; Co - 3.5; P - 1.4; S - 9.0; носитель - остальное; при этом носитель содержит изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 8-10 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 400; натрий - 0.03 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 19:81. Катализатор имеет удельную поверхность 157 м2/г, объем пор 0,41 см3/г, средний диаметр пор 12.5 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0 мм и длиной до 20 мм.
Далее проводят гидроочистку смесевого дизельного топлива аналогично примеру 1.
Пример 6
Готовят носитель по примеру 4, только к суспензии в сосуд автоклава добавляют лантан азотнокислый 6-водный в виде кристаллогидрата в количестве 0,45 г в пересчете на безводный лантан азотнокислый.
В результате получают носитель, содержащий изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 6-7 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 1000; натрий - 0,05 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 13:87. Отличие от примера 3 также состоит в том, что после добавления водного раствора аммиака к порошку псевдобемита и получению пластичной массы, пластичную массу экструдируют при давлении 50,0-60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде четырехлистника с диаметром описанной окружности 1,2 мм и длиной до 20 мм.
Далее готовят раствор смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 6.6 г лимонной кислоты C6H8O7, 8.1 г кобальта(II) гидроксида Co(OH)2, 24.5 г оксида молибдена MoO3 и 4.1 мл ортофосфорной кислоты (85%). После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 9.6 г [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и 24.1 г Co2[H2P2Mo5O23].
100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23] при 25°C в течение 30 мин. Затем катализатор сушат на воздухе 2 ч при 180°C.
Далее катализатор сульфидируют по известным методикам аналогично примеру 1. После сульфидирования катализатор содержит, мас.%: Мо - 11.6; Co - 3.7; P - 1.6; S - 9.8; носитель - остальное; при этом носитель содержит изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 6-7 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 1000; натрий - 0.05 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 13:87. Катализатор имеет удельную поверхность 139 м2/г, объем пор 0,36 см3/г, средний диаметр пор 9.9 нм, и представляет собой частицы с сечением в виде четырехлистника с диаметром окружности 1,2 мм и длиной до 20 мм.
Далее проводят гидроочистку смесевого дизельного топлива аналогично примеру 1.
Пример 7
Готовят носитель по примеру 6, только к суспензии в сосуд автоклава добавляют лантан азотнокислый 6-водный в виде кристаллогидрата в количестве 0,05 г в пересчете на безводный лантан азотнокислый, экструдируют при давлении 50,0-60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде круга с диаметром 1,2 мм.
В результате получают носитель, содержащий изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 5 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 10000; натрий - 0,05 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 5:95. Отличие от примера 6 также состоит в том, что после добавления водного раствора аммиака к порошку псевдобемита и получению пластичной массы, пластичную массу экструдируют при давлении 50,0-60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде круга с диаметром описанной окружности 1,2 мм и длиной до 20 мм.
Далее готовят раствор смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 4.6 г лимонной кислоты C6H8O7, 9,8 г кобальта(II) гидроксида Co(OH)2, 30.5 г оксида молибдена MoO3 и 5.4 мл ортофосфорной кислоты (85%). После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 6.3 г [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и 30.1 г Co2[H2P2Mo5O23].
100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23] при 60°C в течение 30 мин. Затем катализатор сушат на воздухе 3 ч при 200°C.
Далее катализатор сульфидируют по известным методикам аналогично примеру 1. После сульфидирования катализатор содержит, мас.%: Мо - 13.5; Co - 4.2; P - 1.9; S - 11.3; носитель - остальное; носитель - остальное; при этом носитель содержит изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 2-5 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 10000; натрий - 0.05 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 5:95. Катализатор имеет удельную поверхность 195 м2/г, объем пор 0,30 см3/г, средний диаметр пор 13,0 нм, и представляет собой частицы с сечением в виде круга с диаметром окружности 1,2 мм и длиной до 20 мм.
Далее проводят гидроочистку смесевого дизельного топлива аналогично примеру 1.
Пример 8
Готовят носитель по примеру 3, только для получения гидроксида алюминия используют жидкостную форсунку при давлении жидкости 0,6 Мпа на стадии распылительной сушки.
В результате получают носитель, содержащий изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 25-30 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 100; натрий - 0,001 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 31:69.
Далее готовят раствор смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 6.1 г лимонной кислоты C6H8O7, 9.1 г кобальта(II) гидроксида Co(OH)2, 27.4 г оксида молибдена MoO3 и 4.7 мл ортофосфорной кислоты (85%). После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 8.6 г [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и 27.1 г Co2[H2P2Mo5O23].
100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23] при 60°C в течение 30 мин. Затем катализатор сушат на воздухе 4 ч при 120°C.
Далее катализатор сульфидируют по известным методикам аналогично примеру 1. После сульфидирования катализатор содержит, мас.%: Мо - 12.6; Co - 4.0; P - 1.7; S - 10.5; носитель - остальное; при этом носитель содержит изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 25-30 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 100; натрий - 0.001 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 31:69. Катализатор имеет удельную поверхность 200 м2/г, объем пор 0,47 см3/г, средний диаметр пор 9,4 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм.
Далее проводят гидроочистку смесевого дизельного топлива аналогично примеру 1.
Пример 9
Готовят носитель по примеру 2, только для получения гидроксида алюминия используют жидкостную форсунку при давлении жидкости 2 МПа на стадии распылительной сушки.
В результате получают носитель, содержащий изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 45-50 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 50; натрий - 0,05 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 50:50.
Далее готовят раствор смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 4.6 г лимонной кислоты C6H8O7, 9,8 г кобальта(II) гидроксида Co(OH)2, 30.5 г оксида молибдена MoO3 и 5.4 мл ортофосфорной кислоты (85%). После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 6.3 г [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и 30.1 г Co2[H2P2Mo5O23].
100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23] при 60°C в течение 30 мин. Затем катализатор сушат на воздухе 4 ч при 120°C.
Далее катализатор сульфидируют по известным методикам аналогично примеру 1. После сульфидирования катализатор содержит, мас.%: Мо - 13.5; Co - 4.2; P - 1.9; S - 11.3; носитель - остальное; при этом носитель содержит изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 45-50 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 50; натрий - 0.05 мас.%; χ- и γ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 50:50. Катализатор имеет удельную поверхность 185 м2/г, объем пор 0,46 см3/г, средний диаметр пор 10,0 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0 мм и длиной до 20 мм.
Далее проводят гидроочистку смесевого дизельного топлива аналогично примеру 1.
Результаты тестирования катализаторов по примерам 2-9 в гидроочистке приведены в таблице.
Таким образом, как видно из приведенных примеров, полученный предлагаемым способом катализатор за счет своего химического состава, имеет высокую обессеривающую активность, значительно превосходящую активность катализатора-прототипа в гидроочистке дизельного топлива с повышенным содержанием вторичных фракций сырья каталитического крекинга.
Таблица. Результаты тестирования катализаторов в гидроочистке смесевого дизельного топлива
Изобретение относится к способам приготовления катализаторов, предназначенных для переработки дизельного топлива с высоким содержанием вторичных фракций. Описан способ приготовления катализатора гидроочистки дизельного топлива, характеризующийся тем, что катализатор готовят пропиткой носителя, содержащего 0,001-0,05 мас.% Na и дополнительно содержащего на своей поверхности изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 2-50 атомов на 10 нм2 поверхности и соотношением атомов Al к числу атомов La, равным 50-10000, причем носитель состоит из низкотемпературных форм оксида алюминия - γ- и χ-Al2O3 - в следующих соотношениях, мас.%: (50-95):(50-5), водным раствором, одновременно содержащим смесь комплексных соединений [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23]; при этом концентрации компонентов раствора обеспечивают получение состава, мас.%: [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] - 6,0-12,0, Co2[H2P2Mo5O23] - 21,0-30,0, носитель - остальное; с последующим сульфидированием. Получаемый катализатор имеет удельную поверхность 120-200 м2/г, объем пор 0.30-0.50 см3/г, средний диаметр пор 8-13 нм. После сульфидирования по известным методикам катализатор содержит, мас.%: Mo - 10.7-13.5; Co - 3.5-4.2; S - 9.0-11.5; P - 1.4-1.9; носитель - остальное. Технический результат - получение катализатора, имеющего высокую активность и стабильность в целевых реакциях, протекающих при гидроочистке дизельного топлива с высоким содержанием вторичных фракций. 4 з.п. ф-лы, 1 табл., 9 пр.
Комментарии