Код документа: RU2650623C1
Изобретение относится к химической технологии и может быть использовано в процессах с циркулирующим потоком мелкодисперсного катализатора.
В современных процессах с циркулирующим катализатором, в частности в процессе окислительной конверсии этана в этилен [С.Н. Хаджиев и др. Окислительное дегидрирование этана в этилен в системе с циркулирующим микросферическим оксиднометаллическим переносчиком кислорода: 1. Синтез и изучение каталитической системы // Нефтехимия, 2015. Т. 55, №6. С. 506], одним из основных параметров, требующих измерения и контроля, является скорость циркуляции катализатора. Скорость циркуляции выражается через массу катализатора, прошедшего через реактор (либо другой участок установки) за определенное время. В настоящее время в доступных литературных источниках отсутствует информация о наличии прямых методов определения скорости циркуляции мелкодисперсного твердого материала в режиме пневмотранспорта или псевдоожиженного слоя в условиях высоких температур (500-700°C), позволяющих проводить измерения без нарушения технологического режима. Традиционные способы определения скорости циркуляции имеют ряд недостатков: увеличение перепада давления в системе, возможность проведения измерений при температурах не более 200°C и др., что делает невозможным их применение для определения скорости циркуляции оксиднометаллического катализатора в условиях проведения окислительного дегидрирования этана в этилен при температурах 500-700°C.
Известен способ измерения скорости циркуляции твердых частиц, основанный на сравнении сигналов флуктуационных шумов, полученных с помощью пары прецизионных конденсаторов, установленных на разной высоте. Скорость частиц определяется по времени задержки второго сигнала. Концентрация потока частиц определяется по изменению емкостного сопротивления [G.E. Klinzing. Pneumatic Conveying of Solids A Theoretical and Practical Approach // Springer Science+Business Media B.V. 2010 ISBN 978-90-481-3608-7].
Известен способ измерения скорости циркуляции твердых частиц методом электротомографии [P.R. Tortora et al. // International Journal of Multiphase Flow 32 (2006) 972-995].
Известен способ измерения скорости циркуляции твердых частиц с помощью оптико-волоконных датчиков. Метод основан на измерении интенсивности отраженного света, коррелирующей с концентрацией твердых частиц [Н. Zhang et al. // Powder Technology 100 (1998) 260-272].
Известен способ измерения скорости циркуляции твердых частиц с помощью измерения разности длины волн излучаемого и отраженного света лазера (эффект Доплера) [M.N. Pantzalietal. / Chemical Engineering Science 101 (2013) 412-423].
Наиболее близким к заявленному является способ измерения скорости циркуляции мелкодисперсного катализатора, согласно которому непрерывно собирают самообучающуюся выборку статистических данных о динамике перераспределения катализатора между реактором и регенератором, связанных между собой посредством пневмотранспорта [Нагиев А.Г., Халилов С.А., Агаев У.Х., Гусейнова А.С. Самонастраивающаяся система косвенного измерения скорости пневмотранспорта катализатора в реакционно-регенерационных системах химической промышленности // Автоматизация в промышленности, 2012, №12, с. 52-56].
Недостатком известного способа является его сложность. Он требует разработки и установки сложных и дорогостоящих автоматизированных самонастраивающихся систем, надежно функционирующих в условиях проведения реакции (при повышенных температурах и давлениях).
Задача изобретения заключается в разработке простого способа измерения скорости циркуляции мелкодисперсного катализатора с целью определения количества катализатора, прошедшего через реактор, особенно реактор окислительной конверсии этана в этилен, в системе с циркулирующим катализатором за единицу времени без нарушения технологического режима.
Поставленная задача решается тем, что в способе определения скорости циркуляции мелкодисперсного катализатора в линии циркуляции между реактором и регенератором, включающей подъемник катализатора, измеряют температуру подъемника и определяют скорость циркуляции мелкодисперсного катализатора по предварительно определенной зависимости между указанной скоростью и температурой подъемника.
Реактор предпочтительно представляет собой реактор окислительной конверсии этана в этилен. Данный способ может быть применен и в других процессах с пневмотранспортом катализатора между реактором и регенератором, например, в гидрокрекинге.
Подъемник предпочтительно хорошо изолирован от окружающей среды. Это предотвращает влияние ее тепловых воздействий и повышает точность измерений.
Способ является простым и не требует дополнительного оборудования.
Для выражения зависимости температуры подъемника и скорости циркуляции катализатора для каждого типа катализатора предварительно строят градуировочный график (возможно представить зависимость и в форме таблицы). Для этого проводят серию экспериментов с различной скоростью циркуляции, фиксируя расход катализатора по одной из двух методик.
Методика 1. Подъемник отсоединяют от системы, производят отбор катализатора в течение определенного промежутка времени, затем измеряют массу отобранного катализатора. Рассчитывают скорость циркуляции катализатора по формуле
m - масса катализатора, кг;
τ - время, с.
Методика 2. Определяют содержание решеточного кислорода в катализаторе методом температурно-программированного восстановления (ТПВ) [1. Герзелиев И.М., Усачев Н.Я., Попов А.Ю., Хаджиев С.Н. Парциальное окисление низших алканов активным решеточным кислородом оксиднометаллических систем: 1. Экспериментальные методы и установки // Нефтехимия. - 2011. - Т. 51, №6. - С. 420-426]. Методом газовой хроматографии определяют концентрацию кислорода в смеси газов из реактора окисления этана в этилен. Составляют материальный баланс реактора окисления по кислороду за 1 час и вычисляют скорость циркуляции катализатора.
Скорость циркуляции катализатора рассчитывают по формуле:
m - масса кислорода, ушедшего из реактора окисления за 1 час, кг;
ω - содержание решеточного кислорода в катализаторе, мас. %.
Первая из приведенных методик является универсальной, вторую можно использовать в тех случаях, когда реактор представляет собой реактор окислительной конверсии (окисления) этана в этилен.
На Фиг. 1 представлена схема устройства для окислительной конверсии этана в этилен.
На Фиг. 2 представлен градуировочный график зависимости между температурой подъемника и скоростью циркуляции катализатора.
Возможность осуществления изобретения подтверждается примерами.
Окислительную конверсию этана в этилен проводят в устройстве (см. Фиг. 1), представляющем собой вертикальный цилиндрический аппарат с узлом подачи сырья (7), и реактор окислительной регенерации катализатора (4), также представляющий собой вертикальный аппарат, оснащенный штоком (12) и сепаратором (5) с узлом вывода технического азота (11). Над реактором дегидрирования этана (1) находится сепаратор реактора дегидрирования этана (2), к которому присоединены узел вывода продукта - этилена (3) и стояк (8). Реактор дегидрирования этана (1) и реактор окислительной регенерации катализатора (4) находятся в соединении посредством линии циркуляции катализатора между реактором дегидрирования этана и реактором окислительной регенерации катализатора. Эту линию в совокупности составляют подъемник катализатора (6), стояк (8) и транспортная линия (13). В нижней части транспортной линии (13) существует зона, в которой накапливается катализатор. Узлы ввода транспортного азота (9) и (10) присоединены к реактору дегидрирования этана (1) и подъемнику катализатора (6) соответственно. От узла вывода технического азота к узлам ввода транспортного азота (9) и (10) идет линия рецикла технического азота (не показана на рисунке, за исключением направления потока рецикла).
С внешней стороны подъемника катализатора (6) устанавливается термоэлектрический преобразователь (14), соединенный с вторичным преобразователем сигнала (15), регистрирующим значение температуры поверхности подъемника. Подъемник катализатора является необогреваемой линией, в которой осуществляется пневмотранспорт катализатора и не протекает каких-либо химических реакций, поэтому температура его поверхности зависит исключительно от величины теплового потока, проходящего через подъемник, которая, в свою очередь, зависит от скорости циркуляции катализатора. Подъемник хорошо изолирован для предотвращения влияния тепловых воздействий окружающей среды.
Используют катализатор, содержащий 10% V2O5/Al2O3. Катализатор представляет собой микросферический порошок оранжевого цвета. Проводят серию экспериментов с различной скоростью циркуляции с разъединенным от сепаратора реактора окисления подъемником. Записывают температуру t подъемника и массу отобранного катализатора m. Время отбора катализатора - 60 с.
Результаты измерений представлены в табл. 1.
По полученным данным вычисляют скорость циркуляции катализатора по формуле
Осуществляют дегидрирование этана. Для нахождения скорости циркуляции катализатора без прерывания технологического процесса определяют температуру подъемника и с помощью калибровочного графика вычисляют искомую величину.
Пример 1. Температура подъемника составляет 278°C. По градуировочному графику находят скорость циркуляции 2,8⋅10-4 кг/с.
Пример 2. Температура подъемника составляет 220°C. По градуировочному графику находят скорость циркуляции 2⋅10-4 кг/с.
Изобретение относится к химической технологии и может быть использовано в процессах с циркулирующим потоком мелкодисперсного катализатора. Способ определения скорости циркуляции мелкодисперсного катализатора в линии циркуляции между реактором и регенератором, включающей подъемник катализатора, заключается в том, что измеряют температуру подъемника и определяют скорость циркуляции мелкодисперсного катализатора по предварительно определенной зависимости между указанной скоростью и температурой подъемника. Реактор предпочтительно представляет собой реактор окислительной конверсии этана в этилен. Подъемник катализатора предпочтительно изолирован от окружающей среды. Технический результат - упрощение способа, возможность измерения скорости циркуляции катализатора без применения дополнительного оборудования и без прерывания технологического процесса. 2 з.п. ф-лы, 1 табл., 2 ил.