Код документа: RU2613397C1
Изобретение относится к технологии получения защитных покрытий и составов, шихты для них и может быть использовано в металлургической, космической, ядерной технике, стекольной, химической, радиоэлектронной промышленности, а также в энергетике и машиностроении.
Известен способ получения многокомпонентного защитно-упрочняющего покрытия, содержащего слой экзотермического состава в виде оксида кремния и алюминия, предназначенных для приготовления шихты, а в качестве связующего - водный раствор жидкого стекла для получения шликера. Далее производят нанесение шликера на внутреннюю, поверхность теплового агрегата, сушку и нагрев до температуры самораспространяющегося высокотемпературного синтеза (СВС-процесс), см. патент РФ 2137733. Однако известный способ является трудоемким, нетехнологичным за счет использования СВС-процесса, поскольку реализация этого процесса требует создания специальных условий и дополнительного оборудования.
Известен способ получения многокомпонентного защитного упрочняющего покрытия по патенту РФ 2209193, основанный на технологии получения многокомпонентных покрытий для многоуровневой защиты футеровок конструкций, отдельных устройств и элементов в металлургических печах, химических реакторах и др. Обеспечение эрозионной и тепловой защиты достигается созданием на его поверхности покрытия, содержащего три многокомпонентных слоя. При этом каждый слой выполняется на основе материалов, способных к возникновению и проведению СВС-процесса. Для получения в каждый из указанных слоев вводятся модифицирующие добавки. Каждый из слоев наносят в несколько проходов, причем пропитку первого слоя осуществляют многократно с помощью высоконапорных воздушно-распылительных устройств и при повышенном избыточном давлении. После сушки проводят низкотемпературный обжиг и по достижении более низкой температуры вводят защитную среду. Недостатком данного способа является сложность его реализации, основанная на необходимости нанесения многослойного покрытия, его неоднократной пропитки с помощью специальных устройств и при избыточном давлении, а также необходимости использования защитной среды, что делает данный способ трудоемким и нетехнологичным.
Известен способ защиты материалов от воздействия атмосферы при высокой температуре по патенту Франции 2700773, который характеризуется тем, что покрытия наносят на подслой, предназначенный для улучшения сцепления, причем подслой состоит из фосфатов цинка или алюминия. Покрытие на основе борида циркония содержит коллоидный кремнезем, причем соотношение по массе между боридом циркония и коллоидным раствором от 1 до 9, и для его получения требуется проведение дополнительной операции - предварительного остекловывания в интервале 600-700°С. Недостатком данного способа получения защитного покрытия, выполненного на основе указанного состава шихты, является то, что на материал наносят последовательно подслой, без которого наблюдается выгорание подложки из-за отделения покрытия от основы.
Известен способ, описанный в статье Баньковской И.Б., Коловертнова Д.В., Ефименко Л.П. Получение композитов на основе ZrB2-Si и изучение их свойств. Физика и химия стекла. 2011. Т. 37, №2, С. 250-257. В данной работе предложен способ получения покрытия, включающий приготовление шихты путем смешения исходных компонентов, содержащих кремний и борид циркония, приготовление шликера с добавлением органического связующего, нанесение шликера на подложку и последующую термообработку полученной заготовки защитного покрытия при нагревании до 1400°С со скоростью 7 град/мин.
Наиболее близким к заявляемому является способ получения защитного покрытия по патенту РФ №2471751, включающий приготовление шихты путем смешения исходных компонентов, содержащих кремний и борид циркония, приготовление шликера с добавлением органического связующего, нанесение шликера на подложку и последующую термообработку полученной заготовки в воздушной среде, отличающийся тем, что на стадии приготовления шихты в состав исходных компонентов дополнительно вводят бор при следующем соотношении исходных компонентов, мас.%: Si 65-75, ZrB2 10-30, B 10-30, а термообработку полученной заготовки проводят при температуре 650-1000°С в течение 10-15 мин. В составе исходных компонентов используют бор с удельной поверхностью 29-22 м2/г.
Данный способ принят нами в качестве прототипа первого независимого объекта заявленного технического решения
Недостатком прототипа является то, что термообработку покрытия проводят при высокой температуре (650-1000°С) и низкой скорости нагревания (7 К/мин), что приводит к дополнительным энергетическим затратам. При этом поверхностный слой защитного покрытия оказывается неровным, малопористым и недостаточно остеклованным.
Задачей изобретения являются разработка нового способа получения защитного покрытия и создание нового состава шихты для защитного покрытия, обеспечивающих снижение температуры термообработки в интервале от 600 до 650°С, со скоростью 60-65 К/мин, снижение себестоимости продукта при улучшении эксплуатационных характеристик при температуре 1400°С и выше в течение длительного времени за счет повышенной эрозионной стойкости.
Сущность изобретения как технического решения выражается в следующей совокупности существенных признаков, достаточной для достижения указанного выше результата.
Способ получения защитного покрытия, включающий приготовление шихты путем смешения исходных компонентов, содержащих кремний, бор и борид циркония при следующем их соотношении, мас.%: Si 65-75, ZrB2 10-30, B 10-30, приготовление шликера, нанесение шликера на подложку и последующую термообработку полученной заготовки в воздушной среде, отличающийся тем, что приготовление шликера осуществляют с использованием органического связующего в виде ацетонового раствора кремниевой кислоты в количестве 5-10 мас.% свыше 100% массы шихты в расчете на сухое вещество - диоксид кремния, затем слой шликера наносят на подложку из жаростойкого неметаллического материала, высушивают полученную заготовку при 40-80°С и послойно наносят шликер на поверхность защищаемого объекта до образования слоя защитного покрытия требуемой толщины, после чего подвергают заключительному обжигу в силитовой печи при 550-600°C.
Технический результат, достигаемый при использовании существенных признаков заявленного способа, заключается в том, что добавление в шликер органического связующего в виде ацетонового раствора кремниевой кислоты приводит к образованию рентгеноаморфных (наноразмерных) частиц диоксида кремния, что способствует понижению температуры формирования защитного покрытия.
Конкретные примеры заявляемого состава шихты для защитного покрытия приведены в таблице 1, в которой примеры 1-3 соответствуют заявленному составу, а примеры 4 и 5 соответствуют составам шихты, в которых содержание кремния выходит за пределы заявляемого, а пример 6 соответствует составу шихты прототипа.
Качественные характеристики защитных покрытий, полученных после термообработки, приведены в таблице 2, в которой номера составов соответствуют нумерации составов, приведенных в таблице 1.
Для покрытий, получивших оценку в 1 или 3 балла, характерно выгорание графита при термообработке при 1400°С.Для покрытий, получивших оценку в 5 баллов, выгорания графита не наблюдается.
В составах 1-3 наблюдается быстрое остекловывание покрытия, приводящее к образованию тонкого защитного слоя. Этот процесс характеризуется низкими температурой и временем термообработки.
В составах 4 и 5 приведены покрытия, содержание кремния в которых выходит за пределы заявляемого. Снижение содержания кремния до 60 мас.% приводит к впитыванию и деформации покрытия. Повышение содержания кремния до 80 мас.% приводит к образованию тугоплавкого спека, что снижает его качественные характеристики за счет повышения пористости покрытия.
В составе 6 (состав ближайшего аналога) термообработка осуществляется при 600°С, при этом происходит постепенное остекловывание и глубокое проплавление.
Способ осуществляют следующим образом.
Пример 1. В качестве исходных компонентов шихты защитного покрытия используют мелкодисперсные порошки кремния с повышенной удельной поверхностью, борида циркония с удельной поверхностью 6 м2/г и порошок бора с удельной поверхностью 20 м2/г. Процесс нанесения защитных покрытий состоит: из подготовки образцов графита в качестве подложки, приготовления шихты состава (в мас.%) Si - 70, ZrB2 - 20, В – 10, приготовления шликера с использованием органического связующего в виде ацетонового раствора кремневой кислоты, нанесения слоя шликера на подложку из графита, высушивания полученной заготовки при 40°С в течение 10 мин и заключительного обжига образцов в силитовой печи по определенному температурному режиму. Полученную заготовку подвергают термообработке при 500°С в течение 13 мин. При 500°С мы получаем малопористую гладкую поверхность, а явное остекловывание происходит позже - при 800°С. После термообработки достигнуто остекловывание поверхности защитного покрытия, т.е. обеспечение газонепроницаемости покрытия, защищающего графит от воздействия кислорода воздуха при эксплуатации при температурах выше 1400°С в течение длительного времени.
Пример 2. В качестве исходных компонентов шихты защитного покрытия используют мелкодисперсные порошки кремния, борида циркония и бора с повышенной удельной поверхностью 19 м2/г. Процесс нанесения покрытий состоит из подготовки подложки из графита, приготовления шихты состава (в мас.%) Si - 75, ZrB2 - 15, В - 10, приготовления шликера с использованием органического связующего в виде ацетонового раствора кремневой кислоты, нанесения слоя шликера на подложку, например на образцы из графита, высушивания полученной заготовки при 40°С в течение 10 мин и заключительного обжига образцов в силитовой печи по определенному температурному режиму. Полученную заготовку подвергают термообработке при 500°С в течение 14 мин. После термообработки наблюдалось остекловывание поверхности защитного покрытия, т.е. обеспечение газонепроницаемости покрытия, защищающего графит от воздействия кислорода воздуха при эксплуатации при температурах выше 1400°С в течение длительного времени.
Пример 3. В качестве исходных компонентов шихты защитного покрытия используют мелкодисперсные порошки кремния, борида циркония и бора с повышенной удельной поверхностью 22 м2/г. Процесс нанесения покрытий состоит из подготовки подложки из графита, приготовления шихты состава (в мас.%) Si - 80, ZrB2 - 10, В - 10, приготовления шликера с использованием органического связующего в виде ацетонового раствора кремневой кислоты, нанесения слоя шликера на подложку, например на образцы из графита, высушивания полученной заготовки при 40°С в течение 10 мин и заключительного обжига образцов в силитовой печи по определенному температурному режиму. Полученную заготовку подвергают термообработке при 550°С в течение 15 мин. После термообработки наблюдают образование тугоплавкого пористого спека, что вызывает выгорание графита при дальнейшей термообработке при 1400°С.
Способ изготовления защитного покрытия относится к технологии получения защитных покрытий и составов шихты для них и может быть использовано в металлургической, космической, ядерной технике, стекольной, химической, радиоэлектронной промышленности, а также в энергетике и машиностроении. Технический результат заключается в понижении температуры формирования защитного покрытия. Заявленный способ получения защитного покрытия включает приготовление шихты путем смешения исходных компонентов, содержащих кремний, бор и борид циркония при следующем их соотношении, мас.%: Si 65-75, ZrВ10-30, В 10-30, приготовление шликера, нанесение шликера на подложку и последующую термообработку полученной заготовки в воздушной среде, причем приготовление шликера осуществляют с использованием органического связующего в виде ацетонового раствора кремниевой кислоты в количестве 5-10 мас.% свыше 100% массы шихты в расчете на сухое вещество - диоксид кремния, затем слой шликера наносят на подложку из жаростойкого неметаллического материала, высушивают полученную заготовку при 40-80°С и послойно наносят шликер на поверхность защищаемого объекта до образования слоя защитного покрытия требуемой толщины, после чего подвергают заключительному обжигу в силитовой печи при 550-600°С. 2 табл.
Защита деталей из композитных материалов от окисления