Код документа: RU2157974C2
Изобретение относится к измерению расхода текучих сред в закрытых трубопроводах, в частности к датчикам давления для расходомеров.
Предшествующий уровень техники
Обычно датчики давления представляют собой расходомерные диафрагмы, измерительные сопла и трубки Вентури, которые служат для регистрации давления с охватом
всего поперечного сечения и для дросселирования с целью создания активного давления. В случае трубопроводов очень большого поперечного сечения такие устройства малопригодны; кроме того, они тяжелы,
громоздки, а их изготовление требует больших материальных и трудовых затрат. При их использовании неизбежны ограничения по пропускной способности трубопровода или из-за потерь вследствие трения.
Наконец, в названных случаях надежность и точность измерений неудовлетворительны.
Из описания к патенту Германии N 653331 известен датчик давления для расходомеров, устанавливаемый на трубопроводах большого поперечного сечения, в котором, наряду с расходомерной диафрагмой, предусмотрена трубка Вентури, отцентрированная таким образом, что большая ее часть располагается перед расходомерной диафрагмой, а ее задний конец пропущен через отверстие в диафрагме и за диафрагмой, на небольшом расстоянии от нее, оканчивается. Более высокое давление, создающееся перед диафрагмой, воспринимается отверстием, высверленным в стенке, а низкое давление воспринимается у самого низкого места трубки Вентури, причем последнее давление существенно ниже, чем более низкое давление, которое создавалось бы одной диафрагмой. Такая конструкция дорога и не лишена перечисленных выше недостатков. Кроме того, в канале имеют место нарушения течения.
Из описания к патенту США N 3449954 известен расходомер для труб большого диаметра, в котором по периметру распределено несколько датчиков активного давления; каждый датчик представляет собой трапециевидный элемент, выступающий из стенки трубы на некоторую высоту, малую по сравнению с радиусом трубы, и с отверстием для отбора давления в мертвой зоне позади этого элемента. Измерения осуществляют только в отдельных точках вблизи стенок; о профиле потока в целом судить нельзя. И в этом случае сечение канала не свободно от выдающихся в него встроенных элементов.
Раскрытие изобретения
Задачей
настоящего изобретения является создание датчика давления для расходомера, который был бы пригоден для трубопроводов большого поперечного сечения и одновременно был бы лишен перечисленных выше
недостатков.
Решение поставленной задачи достигнуто благодаря тому, что в датчике давления, выполненном в соответствии с настоящим изобретением, создается практически невозмущенный главный поток и, наряду с ним, в особых щелевидных канавках создаются боковые потоки, имеющие достаточное число общих характеристик с главным потоком; в боковых потоках, под воздействием выполненного в форме диффузора расширения в канавках, достигающего своей максимальной глубины, а также под воздействием следующего за расширением конфузора и сил трения между боковыми стенками канавок создается градиент давления, который дает возможность судить о явлениях, развивающихся в главном потоке. Если главный поток достаточно центрально симметричен, можно обойтись лишь одной канавкой в любом месте по периметру трубы; если же приходится считаться с неоднородностью профиля скоростей потока при движении от центра к периферии, на внутренней поверхности корпуса необходимо разместить две или более канавок, равномерно разнесенных по периметру.
Краткое описание фигур чертежей
Более подробно изобретение поясняется на основании прилагаемых чертежей, на которых
представлены:
фиг. 1 - продольный разрез датчика давления согласно первому варианту исполнения;
фиг. 2 - поперечный разрез по линии 1-1 на фиг. 1;
фиг. 3 - продольный разрез
датчика давления согласно второму варианту исполнения;
фиг. 4 - поперечный разрез по линии 1-1 на фиг.3.
Варианты осуществления изобретения
Предлагаемый датчик
давления выполнен в форме корпуса (1), который при помощи одного или нескольких фланцев (2), имеющих уплотнительную прокладку (3), присоединен к фланцу (4) трубопровода (5), подводящего текучую среду,
расход которой измеряют. Конфигурация поперечного сечения трубопровода (5) и корпуса (1) является, чаще всего, круглой, а ось (14) корпуса совпадает с осью трубопровода (15). Радиусы (г) несущих
потоков каналов одинаковы; иными словами, трубопровод плавно переходит в корпус.
В корпусе (1) вдоль одной (фиг. 3,4) или двух (в этом случае - противолежащих) образующих цилиндрической поверхности приварен создающий давление элемент (8), который образует щелевидную канавку (9) переменной глубины (b), расположенную между двумя боковыми стенками (10) и профилированным дном (13). Глубина (b) канавки (9) постепенно увеличивается, начиная с точки, лежащей вблизи переднего края корпуса, таким образом, что образуемый канавкой (9) боковой канал расширяется наподобие диффузора. В самой глубокой точке канавки, имеющей глубину (bmax), предусмотрен штуцер датчика давления (7) для регистрации создаваемого в этом месте максимального давления. После прохождения этой точки глубина канавки снова уменьшается так, что образуется второй, сужающийся наподобие сопла участок, откуда боковой поток снова воссоединяется с главным. В конце второго участка, где поток целиком течет по главному каналу, размещен второй штуцер датчика давления (6).
При прохождении потока текучей среды через описанный выше датчик давления в точке расположения штуцера (7) регистрируется величина максимального давления, а разность между этой величиной и регистрируемым у штуцера (6) значением давления (уже в отсутствие бокового канала) служит основой для расчета величины расхода текучей среды в единицу времени, при этом в каждом конкретном случае значение поправочных коэффициентов может быть определено эмпирическим путем.
Если проходящий по трубке поток достаточно однороден в смысле сохранения центральной симметрии, вполне точный его расход можно определить при наличие уже одного элемента (8), создающего давление и находящегося в произвольно выбранной точке на периферии, при необходимости, могут быть равномерно распределены несколько элементов (8), создающих давление; иллюстрацией этого случая служат (фиг. 1,2), где представлены два противолежащих элемента (8).
Промышленная применимость
Предлагаемый датчик может найти применение в напорных газогидравлических системах различного назначения с каналами
любого поперечного сечения с характерными размерами от 10 до 2500 мм для измерения расхода одно- и многофазных текучих сред с включениями различного физико-механического и химического состава.
Наиболее оправдано применение на трубопроводах с характерным поперечным размером 800-2500 мм, где известные первичные преобразователи расхода, как правило, не обеспечивают требуемую точность
измерений. Среди областей применения можно назвать:
- водоснабжение, водоотведение, теплогазоснабжение и вентиляция населенных мест и промышленных предприятий;
- газовая и нефтяная
промышленность;
- химическая и нефтехимическая промышленность;
- разработка месторождения полезных ископаемых гидравлическим способом;
- гидротранспорт хвостов
обогатительных фабрик;
- системы транспортировки жидкого и газообразного топлива в энергетике;
- системы гидротранспорта строительных растворов и смесей;
- оросительные
системы в сельском хозяйстве;
- технологические газогидравлические системы в пищевой промышленности.
Изобретение предназначено для измерения расхода в трубопроводах большого поперечного сечения. Датчик состоит из присоединенного к трубопроводу корпуса со встроенным в него элементом, в котором образована продольная щелевидная, раскрытая внутрь корпуса канавка переменной глубины. В точке максимальной глубины канавка сообщается со штуцером для отбора максимального давления. Вниз по течению потока в канавке размещен второй штуцер для отбора давления. Изобретение обеспечивает повышение точности измерения из-за отсутствия нарушения течения в трубопроводе. 2 з.п. ф-лы, 4 ил.