Код документа: RU2705705C1
УРОВЕНЬ ТЕХНИКИ
[0001] Вихревые расходомеры используются при управлении производственным процессом для измерения расхода флюида. Вихревые расходомеры обычно вставляются в магистральную трубу или трубопровод, который переносит измеряемый флюид. Промышленные применения включают в себя транспортировку бензина, химикалий, целлюлозно-бумажной массы, материалов месторождений, нефти и газа, например.
[0002] Принцип действия вихревого расходомера основан на явлении вихревой тени, известном как эффект Кармана. Когда флюид проходит тело обтекания, или "плохо обтекаемое тело", он разделяется, и создаются небольшие турбулентные завихрения, или вихри, которые срываются поочередно вдоль, и позади, каждой из сторон плохо обтекаемого тела. Эти вихри приводят к появлению зон флуктуирующего потока и давления, которые регистрируются датчиком. В настоящее время для регистрации таких вихрей используются самые различные типы датчиков, включающие в себя датчики силы, пьезоэлектрические динамические датчики давления, или датчики дифференциального давления, например. Частота образования вихрей по существу пропорциональна скорости флюида.
[0003] Вихревые датчики, используемые в настоящее время для регистрации вихрей в вихревых расходомерах, обычно относительно сложные, и могут иметь дорогостоящую конструкцию. Кроме того, такие датчики требуют дополнительных креплений и надежного уплотнения, поскольку датчик, или некоторая другая подходящая структура, должны быть вставлены в расходомерный трубопровод для взаимодействия с вихрями для их регистрации. Соответственно, технологический флюид приводится в непосредственный контакт с такой структурой, и технологическая вставка должна быть выполнена как герметичная для гарантии того, что технологический флюид не будет утекать.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0004] Вихревой расходомер включает в себя расходомерный трубопровод, имеющий первый конец и второй конец. Отбрасывающая преграда расположена в пределах расходомерного трубопровода между первым концом и вторым концом. Отбрасывающая преграда сконфигурирована для образования вихрей во флюиде, текущем через расходомерный трубопровод. По меньшей мере, один датчик функционально связан с внешней поверхностью расходомерного трубопровода и сконфигурирован для регистрации отдельных деформаций расходомерного трубопровода, образующихся от вихрей в расходомерном трубопроводе.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0005] Фиг.1 изображает схематический вид вихревого расходомера в соответствии с техникой предшествующего уровня.
[0006] Фиг.2A - схематический вид участка расходомерного трубопровода, имеющего внешние вихревые датчики в соответствии с вариантом реализации настоящего изобретения.
[0007] Фиг.2B - схематический вид расходомерного трубопровода, имеющего внешние вихревые датчики и датчик шума потока в соответствии с вариантом реализации настоящего изобретения.
[0008] Фиг.3A - схематический вид, показывающий относительное позиционирование отбрасывающей преграды и пьезоэлектрических пленочных датчиков в соответствии с вариантом реализации настоящего изобретения.
[0009] Фиг.3B - схематический вид, показывающий относительное позиционирование отбрасывающей преграды и пьезоэлектрического пленочного датчика, располагаемого выше и ниже по ходу относительно отбрасывающей преграды в соответствии с вариантом реализации настоящего изобретения.
[0010] Фиг.4A и 4 B - графическое представление сигнала от вихревого расходомера в соответствии с вариантом реализации настоящего изобретения.
[0011] Фиг.5A и 5B - подобный же набор графических представлений, как и на Фиг.4A и 4B, для более низкого расхода флюида.
[0012] Фиг.6A - результаты тестового измерения частоты образования вихрей и вычисления частоты образования вихрей.
[0013] Фиг.6B - график зависимости частоты образования вихрей от расхода.
[0014] Фиг.7A - схематический вид преобразователя вихревого потока в соответствии с вариантом реализации настоящего изобретения.
[0015] Фиг.7B - схематический вид преобразователя вихревого потока с присоединенными дополнительными пьезоэлектрическими пленочными датчиками в соответствии с вариантом реализации настоящего изобретения.
[0016] Фиг.8 - блок-схема последовательности операций способа предоставления выходного сигнала скорости потока на основании считывания вихрей и, как опция, шумов потока, в соответствии с вариантом реализации настоящего изобретения.
ПОДРОБНОЕ ОПИСАНИЕ
[0017] На Фиг.1 показан схематический вид вихревого расходомера в соответствии с техникой предшествующего уровня. Вихревой расходомер 100 включает в себя расходомерный трубопровод 102, который переносит в себе флюид. Потоком флюида может быть жидкость, газ, или их комбинация (например, влажный пар). Расходомерный трубопровод 102 обычно прикрепляется к паре фланцев, которые позволяют установить сборку на соответствующих фланцах отрезка трубопровода. Соответственно, каждый из фланцев может включать в себя монтажные отверстия (показанные в полуразрезе), которые позволяют прикрепить каждый фланец к соответственному фланцу флюидной трубопроводной системы.
[0018] Как показано на Фиг.1, вихревой расходомер 100 включает в себя отбрасывающую преграду 118, которая располагается в пределах расходомерного трубопровода 102, простираясь от верхнего его участка к нижнему его участку. Кроме того, если расходомерный трубопровод 102 рассматривать вдоль его оси, то можно видеть, что отбрасывающая преграда 118 обычно устанавливается в центре расходомерного трубопровода 102, простираясь от центра самого верхнего участка расходомерного трубопровода 102 к центру самого нижнего участка расходомерного трубопровода 102. Однако, вихревые расходомеры могут быть реализованы с такими отбрасывающими преградами, которые устанавливаются в других ориентациях, так же как и с отбрасывающими преградами, которые полностью не охватывают весь внутренний диаметр расходомерного трубопровода. Когда флюид обтекает отбрасывающую преграду 118, в потоке флюида возникают вихри. Эти вихри обозначаются как вихревая дорожка Кармана. Вихри возникают, когда поток флюида проходит положение ниже по ходу и вблизи аппарата 126 считывания. Вихри физически взаимодействуют с аппаратом 126, вызывая небольшие перемещения и колебания в аппарате 126. Эти перемещения могут быть преобразованы, или иначе считаны, датчиком, например, датчиком 128, который электрически связан с электронным устройством 130, находящимся в корпусе 132. Соответственно, вихревой расходомер обычно содержит сборку расходомерного трубопровода и электронную сборку, что, при объединении, может обозначаться как преобразователь вихревого потока. Электронное устройство 130, находящееся в корпусе 132, обычно преобразовывает сигнал датчика в стандартизированный сигнал передачи, который предоставляется на выходные соединения 148 для передачи на другое подходящее устройство, например, на технологический контроллер или контроллер клапана.
[0019] Как можно видеть из вышеприведенного чертежа на Фиг.1, предшествующие конструкции вихревого расходомера обычно предоставляют структуру, расположенную в пределах расходомерного трубопровода вблизи отбрасывающей преграды, для регистрации вихрей, или для считывания вихрей иным образом. При этом, структура должна быть тщательно герметизирована, так, чтобы технологический флюид не утекал из расходомерного трубопровода 102. Кроме того, технологический флюид непосредственно взаимодействует со структурой или датчиком, расположенным в пределах расходомерного трубопровода, и может вызвать повреждение, или приводить к износу считывающей структуры.
[0020] Варианты реализации настоящего изобретения, в целом, избегают внутренней структуры считывания вихрей, такой как структура 126, или датчиков других типов, внутри расходомерного трубопровода и измеряют, или регистрируют пульсации давления вихрей внешне на расходомерном трубопроводе. В одном варианте реализации, пульсации давления вихрей регистрируются с использованием множества пьезоэлектрических пленочных датчиков механического напряжения, которые установлены на внешней стенке расходомерного трубопровода вихревого расходомера.
[0021] На Фиг.2A показан схематический вид участка расходомерного трубопровода, такого как расходомерный трубопровод 102 с отбрасывающей преградой 118, расположенной в пределах потока флюида. Как показано на Фиг.2A, первый пьезоэлектрический пленочный датчик 150 установлен на первой стороне расходомерного трубопровода 102 относительно отбрасывающей преграды 118. Второй пьезоэлектрический пленочный датчик 152 расположен на противоположной стороне расходомерного трубопровода 102 относительно первого пьезоэлектрического пленочного датчика 150. Когда вихри срываются на противоположных сторонах отбрасывающей преграды 118, эти флюидные вихри взаимодействуют с боковой стенкой расходомерного трубопровода 102 до такой степени, что пьезоэлектрическая пленка может считывать механическое напряжение в боковой стенке, вызванное падением на нее соответствующего вихря.
[0022] Чертеж на Фиг.2B подобен чертежу на Фиг.2A, и подобные компоненты пронумерованы аналогично. Главное различие между показанным на Фиг.2B вариантом реализации и показанным на Фиг.2A вариантом реализации заключается в добавлении, по меньшей мере, одного пьезоэлектрического пленочного датчика 154 выше по ходу. Как показано, датчик 154 установлен выше по ходу относительно отбрасывающей преграды 118, на любой стороне(-ах) расходомерного трубопровода 102. Хотя на Фиг.2B показан единственный верхний по ходу пьезоэлектрический пленочный датчик, предполагается, что варианты реализации настоящего изобретения включают в себя больше чем один пьезоэлектрический пленочный датчик, располагаемый выше по ходу. Фактически, такие варианты реализации могут позволить согласовать располагаемый выше по ходу датчик с располагаемым ниже по ходу датчиком для упрощения обработки сигнала или для удаления шумовых компонентов.
[0023] Из численного анализа было определено, что относительная микро-деформация расходомерного трубопровода вихревого расходомера на противоположных сторонах плохо обтекаемого тела или отбрасывающей преграды будет равна приблизительно 2,5 и что выходное напряжение от пьезоэлектрической пленки при таком местоположении будет равно приблизительно 30 милливольт, для такого коэффициента электромеханического преобразования, когда пьезоэлектрические пленочные датчики имеют 12 милливольт на единицу микро-деформации. Для проверки такого моделирования, был сконструирован вихревой расходомер размера DN80 (3 дюйма) с пьезоэлектрическими пленочными датчиками, где пьезоэлектрические пленочные датчики были прикреплены на противоположных сторонах расходомерного трубопровода. Пьезоэлектрические пленки были типа SDT1-028K, доступные от Measurement Specialties of Hampton, Virginia.
[0024] На Фиг.3A представлен схематический вид, показывающий относительное позиционирование отбрасывающей преграды 118 и пьезоэлектрических пленочных датчиков 150, и 152 в соответствии с другим вариантом реализации настоящего изобретения. Отбрасывающая преграда 118 установлена так, что она располагается приблизительно на центральной линии расходомерного трубопровода 102. Кроме того, отбрасывающая преграда 118 установлена непосредственно перед серединой между установочными фланцами. В показанном на Фиг.3A варианте реализации флюид течет от левой стороны сборки расходомерного трубопровода к правой стороне. Таким образом, в отличие от показанного на Фиг.2A варианта реализации, пьезоэлектрические пленочные датчики 150 и 152 установлены снизу по ходу относительно отбрасывающей преграды 118, на противоположных сторонах расходомерного трубопровода 102.
[0025] Чертеж на Фиг.3B подобен чертежу на Фиг.3A, и подобные компоненты пронумерованы подобно. Главное различие между показанным на Фиг.3B вариантом реализации и тем, что на Фиг.3A, заключается во введении выше по ходу пьезоэлектрического пленочного датчика 154. Как показано, верхний по ходу пьезоэлектрический пленочный датчик 154 установлен выше по ходу относительно отбрасывающей преграды 118, на любой стороне(-ах) расходомерного трубопровода 102.
[0026] Хотя на Фиг.3A показана пара пьезоэлектрических пленочных датчиков 150, 152, предполагается также, что могут быть использованы различное количество пьезоэлектрических пленочных датчиков для считывания внешней деформации или механического напряжения расходомерного трубопровода 102 в соответствии с вариантами реализации настоящего изобретения. Например, единственный пьезоэлектрический пленочный датчик может быть достаточным для считывания деформаций и предоставления значимой информации о частоте вихревого потока. Это так, в частности, если единственный пьезоэлектрический пленочный датчик по существу обернут вокруг всей внешней окружности расходомерного трубопровода 102. Кроме того, более чем два пьезоэлектрических пленочных датчика также могут быть использованы в соответствии с вариантами реализации настоящего изобретения. Например, пьезоэлектрический пленочный датчик 154, как показано на Фиг.3B, расположенный сверху по ходу относительно отбрасывающей преграды 118, может позволить до некоторой степени сократить шумы общего свойства. Например, если расположенный выше по ходу насос дает флуктуации давления в технологическом флюиде, то датчик верхний по ходу может считывать такие возмущения флуктуаций на боковой стенке трубопровода, так, что они могут быть удалены из сигналов, создаваемых нижними по ходу пьезоэлектрическими пленочными датчиками. Такое удаление может быть выполнено любым подходящим образом, но в одном варианте реализации это включает в себя цифровой анализ сигнала верхнего по ходу датчика для идентификации некоторых частотных характеристик, например, пульсаций накачки, так чтобы определенная частота могла быть поглощена или иначе удалена из сигналов, предоставляемых нижними по ходу пьезоэлектрическими пленочными датчиками.
[0027] На Фиг.4A и 4B показано графическое представление сигнала от вихревого расходомера в соответствии с вариантом реализации настоящего изобретения. Выходные напряжения Upf1 и Upf2 от пьезоэлектрических пленочных датчиков 150, 152, соответственно, были измерены многоканальным цифровым осциллографом. Разностный сигнал р ΔUpf был вычислен на основании различия между Upf1 и Upf2. Частота образования вихрей была определена, используя Быстрое Преобразование Фурье (FFT). Как показано на Фиг.4A, ΔUpf выражается в милливольтах по вертикальной шкале, тогда как время в миллисекундах отображено на горизонтальной шкале. Кроме того, на Фиг.4B показан спектр сигнала ΔUpf для расхода 130 кубических метров в час. Как можно видеть, на Фиг.4B показано множество частотных пиков. Первый частотный пик, соответствующий частоте образования вихрей, показан на частоте 95,37 Гц. Кроме того, более существенный частотный пик показан на 200,27 Гц. Пик на 200,27 Гц соответствует частоте потока пульсаций от одного или более насосов, которые подают воду в макетном испытании. Как сформулировано ранее, верхний по ходу пьезоэлектрический датчик измеряет шум потока, например, пульсации от насосов, и анализ этого укажет, что 200-герцевый частотный диапазон должен игнорироваться при вычислении или другом определении частоты образования вихрей в соответствии с вариантами реализации настоящего изобретения.
[0028] На Фиг.5A и 5B показан подобный же набор графических представлений, что и на Фиг.4A и 4B для более низкого расхода флюида. В изображенном на Фиг.5A и 5B испытании, использовался расход воды в 90 в кубических метров в час. Как показано, в частности, на Фиг.5B, частотный анализ спектра сигнала указывает пик на частоте 66,76 Гц, и это частота образования вихрей. Подобные анализы при 60 кубических метрах в час и 30 кубических метров в час указали соответствующие частоты образования вихрей 47,68 Гц и 38,15 Гц. Эти результаты сравнивались с вычислениями вихрей и различные измеренные расходы на основании измеренной частоты образования вихрей в целом совпадали с расчетной частотой образования вихрей, по меньшей мере, для трех испытаний с более высоким расходом, показанных на Фиг.6B. Таблица на Фиг.6A показывает сравнение измеренной частоты образования вихрей из результатов испытаний с частотой образования вихрей, вычисленной с использованием K-фактора калибровки вихревого расходомера. Сравнение частоты образования вихрей, полученной при испытании, и расчетными значениями, показывает относительно линейную зависимость от расхода.
[0029] На Фиг.7A показан схематический вид преобразователя вихревого потока в соответствии с другим вариантом реализации настоящего изобретения. Как показано на Фиг.7A, сборка расходомерного трубопровода включает в себя расходомерный трубопровод 102 с установленной в нем отбрасывающей преградой 118. Кроме того, в показанном на Фиг.7A варианте реализации, пара пьезоэлектрических пленочных датчиков 150, 152 установлена снаружи расходомерного трубопровода 102 на противоположных сторонах отбрасывающей преграды 118 и на внешней стороне расходомерного трубопровода 102.
[0030] Чертеж на Фиг.7B подобен таковому на Фиг.7A, и подобные компоненты пронумерованы аналогично. Главное различие между показанным на Фиг.7B вариантом реализации и таковым на Фиг.7A заключается во введении верхнего по ходу пьезоэлектрического пленочного датчика 154. Как показано, верхний по ходу пьезоэлектрический пленочный датчик 154 располагается выше по ходу относительно отбрасывающей преграды 118, на любой стороне(-ах) расходомерного трубопровода 102.
[0031] Каждый из пьезоэлектрических пленочных датчиков 150, 152, 154 электрически связан с электронной измерительной схемой 160 электронной схемы 130 преобразователя. Электронная измерительная схема 160 обычно включает в себя один или более подходящих аналого-цифровых преобразователей, имеющих достаточно широкую полосу пропускания для фиксации событий пульсации боковой стенки расходомерного трубопровода. Обращаясь снова к некоторым из результатов испытаний относительно макетного датчика, подходящие результаты были получены с электронной измерительной схемой, которая имела возможность преобразовать 25 измерений за 10 миллисекунд. Кроме того, если используются датчики с более широкой полосой пропускания, множественные точки данных могут быть усреднены для повышения точности данных. Электронная измерительная схема 160 связана с контроллером 162, который, в одном варианте реализации, является микропроцессором.
[0032] Микропроцессор 162 сконфигурирован, посредством аппаратных средств, программного обеспечения, или комбинации этого, для анализа цифровых сигналов, предоставляемых электронной измерительной схемой 160, и предоставления расхода технологического флюида на основании частоты образования вихрей и, как опция, шума потока. Как сформулировано выше, контроллер 162 может выполнять Быстрое Преобразование Фурье сигналов датчика вихрей для идентификации частоты образования вихрей и/или для идентификации частоты других артефактов, которые могут вызвать шум или ошибку. Контроллер 162 связан со схемой 164 коммуникации, которая может взаимодействовать с петлей технологической связи или сегментом, используя любой подходящий протокол технологической связи, например, протокол взаимодействия с удаленным датчиком с шинной адресацией (HART®), FOUDATIONTM Fieldbus, или другие. Кроме того, в вариантах реализации, где вихревой расходомер связывается беспроводным образом, схема 164 коммуникации может поддерживать протокол беспроводной технологической связи, такой как в соответствии с IEC 62591 (WirelessHART).
[0033] Электронное устройство 130 расходомера также включает в себя схему 166 питания, которая обеспечивает надлежащее питание всех компонент электронной схемы 130. В вариантах реализации, где вихревой расходомер связан с проводной сетью или сегментом технологической связи через проводники 158, модуль 166 питания может принимать и соответственно формировать электропитание от проводной сети технологической связи для обеспечения рабочего питания компонент электронной схемы 130. Соответственно, некоторые варианты реализации настоящего изобретения могут быть полностью запитаны проводной сетью или сегментом технологической связи, к которым они присоединены. В других вариантах реализации, когда преобразователь вихревого расхода не присоединен к проводной сети или сегменту технологической связи, модуль 166 питания может включать в себя подходящую батарею или источник энергии для обеспечения электроэнергии для компонент электронной схемы 130 на требуемый промежуток времени.
[0034] На Фиг.8 показана блок-схема последовательности операций способа предоставления выходного сигнала скорости потока на основании считывания вихрей в соответствии с вариантом реализации настоящего изобретения. Способ 300 начинается в блоке 302, где в пределах расходомерного трубопровода предоставляется отбрасывающая преграда. Отбрасывающая преграда специально сконфигурирована для образования вихрей в флюиде когда флюид обтекает отбрасывающую преграду. Отбрасывающая преграда может иметь любую подходящую форму, уже известную к настоящему времени или разработанную позднее. В одном примере, отбрасывающая преграда может иметь относительно плоскую переднюю поверхность, и суженные боковые стенки, простирающиеся до относительно узкой задней поверхности, так, как это показано на Фиг.2.
[0035] Затем, в блоке 304, технологический флюид начинает течь через расходомерный трубопровод. Когда технологический флюид течет через расходомерный трубопровод, он создает появляющиеся периодически вихри, когда он обтекает отбрасывающую преграду. В блоке 306, внешние деформации расходомерного трубопровода регистрируются с использованием одного или более датчиков, установленных на расходомерном трубопроводе, или иначе связанных с расходомерным трубопроводом. Как сформулировано выше, когда вихри падают на внутреннюю боковую стенку, или иначе взаимодействуют с внутренней боковой стенкой расходомерного трубопровода, расходомерный трубопровод и сам испытает регистрируемую деформацию. В одном варианте реализации, эта деформация регистрируется с использованием одного или более пьезоэлектрических пленочных датчиков. Однако, способ 300 может быть осуществлен с любым подходящим способом регистрации деформации или с любой методикой.
[0036] Затем, в блоке 308, частоты образования вихрей вычисляются на основании деформаций, детектированных в блоке 306. В одном варианте реализации, частота образования вихрей может быть вычислена посредством выполнения частотного анализа сигнала регистрации деформации. Один из примеров такого частотного анализа - это Быстрое Преобразование Фурье. Наконец, в блоке 310, вычисленная частота образования вихрей используется для предоставления выходного сигнала скорости потока. Этот выходной сигнал скорости потока может быть указан локально вихревым расходомером и/или передан одному или более удаленным устройствам, как соответствующий сигнал.
[0037] Как опция, в блоке 312, технологический флюид течет через расходомерный трубопровод. Когда технологический флюид течет через расходомерный трубопровод выше по ходу относительно отбрасывающей преграды, он создает шум потока. В блоке 314, внешние деформации расходомерного трубопровода от шума потока регистрируются с использованием одного или более датчиков, установленных на любых или противоположных сторонах расходомерного трубопровода. В блоке 308, частоты образования вихрей вычисляются на основании деформаций, детектированных в блоке 306 и деформаций расходомерного трубопровода от шума потока. В одном варианте реализации, частота образования вихрей может быть вычислена посредством выполнения частотного анализа общего сигнала регистрации деформации. Один из примеров такого частотного анализа - это Быстрое Преобразование Фурье. Наконец, в блоке 310, вычисленная частота образования вихрей используется для предоставления выходного сигнала скорости потока. Этот выходной сигнал скорости потока может быть указан локально вихревым расходомером и/или передан одному или более удаленным устройствам, как соответствующий сигнал.
[0038] Хотя настоящее изобретение было описано в отношении предпочтительных вариантов реализации, специалисты в данной области техники увидят, что могут быть выполнены изменения в форме и деталях, не отступая от принципов и объема притязаний изобретения. Например, хотя варианты реализации настоящего изобретения описывались относительно пьезоэлектрических пленочных датчиков, такие датчики представляют собой просто примеры датчиков с подходящими возможностями считывания для внешнего регистрации попадания вихрей на расходомерный трубопровод. Таким образом, другие типы датчиков, или теперь известных, или позднее разработанных, могут быть пригодны для использования в соответствии с вариантами реализации настоящего изобретения.
Изобретение относится к вихревому расходомеру и способу обнаружения расхода флюида. Вихревой расходомер включает в себя расходомерный трубопровод, имеющий первый конец и второй конец. Отбрасывающая преграда расположена в пределах расходомерного трубопровода между первым концом и вторым концом. Отбрасывающая преграда сконфигурирована для образования вихрей во флюиде, текущем через расходомерный трубопровод. По меньшей мере, один датчик функционально связан с внешней поверхностью расходомерного трубопровода и сконфигурирован для регистрации отдельных деформаций расходомерного трубопровода, образующихся от вихрей в расходомерном трубопроводе. Технический результат – исключение повреждений и износа считывающей структуры. 3 н. и 18 з.п. ф-лы, 8 ил.