Код документа: RU2565764C1
Изобретение относится к области промышленного органического синтеза, точнее к получению фенола и ацетона кумольным способом, а также фенола, метилэтилкетона и циклогексанона.
Известный способ получения фенола и ацетона путем окисления кумола кислородом воздуха с последующим кислотно-каталитическим разложением гидропероксида кумола позволяет получить оба целевых продукта с высоким выходом (Кружалов Б.Д., Голованенко Б.Н. Совместное получение фенола и ацетона. - М.: Госхимиздат, 1964). Он широко применяется для производства этих продуктов, являясь основным в мировой практике.
Первой стадией процесса получения фенола и ацетона является окисление кумола кислородом воздуха в гидропероксид кумола (ГПК), который в дальнейшем разлагают в присутствии кислотного катализатора с образованием целевых продуктов. Основным побочным продуктом реакции окисления кумола является 2-фенилпропанол-2 (диметилфенилкарбинол, ДМФК), образующийся на стадии инициирования цепной реакции окисления кумола молекулярным кислородом. Использование кислорода воздуха для окисления кумола предполагает, что часть ГПК используется в процессе на стадии инициирования цепной реакции окисления и неизбежно присутствует в реакционной массе.
В результате дальнейшей переработки продуктов реакции окисления из ДМФК образуется основное количество отходов производства - фенольной смолы, а также α-метилстирола (АМС), который чаще всего гидрируют с целью получения исходного кумола, что увеличивает издержки производства.
Превращение ДМФК в гидропероксид кумола (ГПК) позволяет уменьшить выход побочных продуктов, снизить расходы на очистку фенола и ацетона, а также повысить качество товарных продуктов.
Описан способ конверсии ДМФК в ГПК при помощи пероксида водорода в присутствии титансодержащих цеолитов (патент Японии JP H10306074, опубл. 17.11.1998). Недостатком указанного способа является разложение пероксида водорода внутри частиц цеолита, что приводит к его разрушению выделяющимся кислородом и, соответственно, короткому сроку его службы.
Наиболее близким к предлагаемому является способ получения фенола и ацетона, описанный в патенте США 6943270 (опубл. 13.09.2005), в котором реакционную массу окисления кумола обрабатывают водным раствором пероксида водорода, возможно, в присутствии кислотного катализатора, что приводит к окислению альдегидов и ДМФК. Эффективность данного способа для окисления альдегидов довольно низка, поскольку основное количество уксусного и пропионового альдегидов образуется на стадии разложения ГПК, когда пероксид водорода, согласно схеме процесса, уже удален из реакционной массы. Кроме того, смешивание органической фазы с водным пероксидом водорода в соотношении от 0,1:1 до 10:1 представляет потенциальную опасность, поскольку смешивают органическую фазу с окислителем в опасных соотношениях.
Целью данного изобретения является повышение конверсии алкилароматических углеводородов при сохранении высокой селективности процесса и повышение уровня безопасности.
Для достижения цели предлагается способ получения фенола и ацетона, включающий окисление кумола кислородсодержащим газом в жидкой фазе в гидропероксид кумола с примесью диметилфенилкарбинола с удалением избытка кумола из реакционной массы с последующей обработкой продукта окисления водным раствором пероксида водорода при заданном соотношении водная фаза : органическая фаза и разложением его при повышенной температуре, отличающийся тем, что обработку всего продукта окисления или его части ведут водным раствором пероксида водорода при соотношении водная фаза : органическая фаза более 10.
Предпочтительно обработку продукта окисления проводят при температуре 30-90°C.
Предпочтительно обработку продукта окисления осуществляют водным раствором пероксида водорода с концентрацией от 25 до 80%.
Предпочтительно продукт окисления диспергируют в водной фазе в реакторе конверсии диметилфенилкарбинола.
Предпочтительно удаление избытка кумола из реакционной массы окисления проводят либо до обработки пероксидом водорода, либо после такой обработки, либо частично до и частично после обработки пероксидом водорода.
Предпочтительно часть потока продукта окисления обрабатывают пероксидом водорода и объединяют его с оставшейся необработанной частью продукта окисления и направляют на дальнейшую переработку.
Процесс конверсии ДМФК в ГПК представляет собой равновесную реакцию замещения, положение равновесия которой определяется соотношением концентраций исходных веществ и продуктов реакции. При этом в водной фазе концентрации ДМФК и ГПК малы, а в органической фазе малы концентрации воды и пероксида водорода, однако скорость реакции ДМФК с пероксидом водорода больше в водной фазе. Таким образом, реакцию предпочтительно проводить в водной фазе.
В соответствии с данным изобретением кумол окисляют кислородсодержащим газом в гидропероксид, содержащий побочно образующийся ДМФК. Полученный продукт окисления полностью или частично обрабатывают пероксидом водорода, в результате чего часть ДМФК превращается в ГПК и получают переработанный продукт окисления кумола с меньшим содержанием ДМФК. Затем из продукта окисления кумола удаляют избыток непрореагировавшего кумола, а полученный технический ГПК разлагают с образованием фенола, ацетона, а также АМС. Полученные в результате фенол и ацетон могут быть использованы для производства дифенилолпропана (Бисфенола-А, БФА).
АМС, полученный из ДМФК, оставшегося не превращенным в техническом ГПК, может быть использован для синтеза пара-кумилфенола алкилированием фенола известным способом. Количество АМС, получаемого при разложении ГПК можно регулировать в соответствии с потребностью путем изменения условий конверсии ДМФК в ГПК либо изменением доли от общего потока продукта окисления кумола, которую подвергаю обработке водным раствором пероксида водорода. Образование в процессе требуемого количества АМС позволяет исключить из технологической схемы узел его рецикла гидрированием в кумол.
Возможно проведение обработки продукта окисления кумола как непосредственно после его выхода из системы окисления, так и после удаления из него избыточного кумола, а также между стадиями удаления избыточного кумола, если этот процесс проводят в несколько стадий.
Конверсию ДМФК проводят в реакторе, в нижнюю часть которого подают диспергированный продукт окисления кумола (органическая фаза). Сплошной водной фазой в реакторе является водный пероксид водорода, который также подают в реактор в виде водного раствора. При этом из водной фазы в органическую фазу переходит образовавшийся ГПК, а из органической фазы в водную фазу переходит ДМФК. Соотношение водной и органической фаз в реакторе поддерживают более 10, а температуру 30-90°C в зависимости от концентрации пероксида водорода в водной фазе и ГПК в обрабатываемом продукте окисления кумола.
Выходящий из реактора поток разделяют на органическую фазу и водную фазу. Органическую фазу направляют на дальнейшую переработку - разложение ГПК на фенол и ацетон с предварительным удалением избытка кумола. Водную фазу частично возвращают в реактор конверсии ДМФК, а частично выводят для удаления реакционной воды.
Выходящую из реактора конверсии водную фазу упаривают для удаления воды и растворенного кумола, который возвращают на стадию окисления. Пероксид водорода после удаления избытка воды возвращают в реактор конверсии ДМФК. Схема процесса производства фенола и ацетона приведена на рисунке 1.
Промышленная применимость данного изобретения иллюстрируется следующими примерами.
Пример 1.
Процесс конверсии ДМФК, содержащегося в продукте окисления кумола кислородом воздуха, проводят в установке, схема которой представлена на рис. 2.
Стеклянный реактор объемом 60 мл и высотой 300 мм, снабженный теплообменной рубашкой, по которой прокачивают воду от термостата, заполняют 51% раствором пероксида водорода. В нижней части реактора установлено сопло диаметром 0,5 мм для диспергирования. При прокачивании продукта окисления кумола через него образуются капли органической фазы диаметром 1-2 мм, которые свободно всплывают в сплошной водной фазе со скоростью 30-50 мм/с, достигая поверхности за 6-10 с. В верхней части реактора имеется боковой отвод, присоединенный к отстойнику. Тяжелую (водную) фазу из отстойника полностью и органическую фазу частично при помощи циркуляционного (мембранного) насоса подают в нижнюю часть реактора. Соотношение фаз регулируют изменением скорости циркуляции органической фазы (количество одновременно всплывающих капель органической фазы при практически постоянной скорости всплывания). Соотношение водной и органической фаз определяют путем остановки циркуляции по окончании каждого эксперимента и измерения количества водной и органической фаз в реакторе после их полного разделения. Скорость циркуляции 200 мл/час обеспечивает соотношение водной и органической фаз равное 20.
После достижения температуры 80°C в реакторе включают циркуляционный насос и насос подачи сырья (продукта окисления кумола) до полного заполнения отстойника и циркуляционной петли установки, затем насос подачи сырья останавливают. Циркуляцию органической фазы продолжают 1 час для достижения состава фаз, близкого к стационарному. После этого включают насос подачи сырья (30 г/час) и выводят балансовое количество органической фазы по уровню верхнего отвода реактора.
Стационарное состояние устанавливается после 3 часов работы установки, после чего собирают продукты и анализируют методом газожидкостной хроматографии. Концентрацию пероксида водорода определяют титрованием.
Состав продукта окисления кумола, содержащий ДМФК, который используют в эксперименте, представлен в таблице 1. Состав потока, выходящего из реактора конверсии ДМФК после достижения системой стационарного состояния, представлен в таблице 2.
Примеры 2-4.
Конверсию ДМФК проводят в тех же условиях с использованием аналогичного сырья, что и в примере 1, но используют водный раствор пероксида водорода с концентрацией 25, 35 и 59% соответственно. Соотношение водной и органической фаз равно 20.
Результаты конверсии ДМФК представлены в таблице 3. В таблицу включен результат из примера 1.
Примеры 5-8
Конверсию ДМФК проводят в тех же условиях с использованием аналогичного сырья, что и в примере 1, но используют водный раствор пероксида водорода с концентрацией 35, 59 и 70% мас. в диапазоне температур 60-90°C. Соотношение водной и органической фаз равно 20.
Результаты конверсии ДМФК представлены в таблице 4.
Пример 9
Полученную в примере 1 реакционную массу с низким содержанием ДМФК упаривают на роторном испарителе до остаточного содержания кумола 14% мас. Полученное таким образом сырье разлагают на пилотной установке в две стадии, при температуре 50°C на первой и 125°C на второй стадии. Концентрация серной кислоты, использованной в качестве катализатора, - 180 м.д. на первой стадии. В реакторе первой стадии проводят циркуляцию реакционной массы с выхода на вход, соотношение водной и органической фаз равно 16. Перед подачей в реактор второй стадии разложения ГПК реакционную массу дополнительно разбавляют ацетоном в количестве 25% от реакционной массы первой стадии.
Выход побочных продуктов в расчете на 1000 кг полученного таким образом фенола составил 14 кг, концентрация гидроксиацетона в реакционной массе разложения ГПК составила 1000 м.д.
Пример 10 (для сравнения).
Реакционную массу окисления кумола того же состава, что использовали для конверсии ДМФК, упаривают до остаточного содержания кумола 14%. Полученное таким образом сырье для разложения ГПК обрабатывают так же, как и в примере 9. Соотношение водной и органической фаз равно 16.
Выход побочных продуктов в расчете на 1000 кг полученного таким образом фенола составил 24 кг, концентрация гидроксиацетона в реакционной массе разложения ГПК составила 1100 м.д.
Изобретение относится к способу получения фенола и ацетона. Способ включает окисление кумола кислородсодержащим газом в жидкой фазе в гидропероксид кумола с примесью диметилфенилкарбинола с удалением избытка кумола из реакционной массы с последующей обработкой продукта окисления водным раствором пероксида водорода при заданном соотношении водная фаза : органическая фаза и разложением его при повышенной температуре. При этом обработку всего продукта окисления или его части ведут водным раствором пероксида водорода при соотношении водная фаза : органическая фаза более 10. Предлагаемый способ позволяет повысить конверсию алкилароматических углеводородов при сохранении высокой селективности процесса и повышении уровня безопасности. 5 з.п. ф-лы, 2 ил., 4 табл., 10 пр.