Код документа: RU2124702C1
Настоящее изобретение относится к способу измерения уровня воды или жидкости и к барботажному уровнемеру, применяемым в основном для измерения уровня воды в водохранилищах, реках (особенно когда в них образуется ледяной покров), у берегов моря при отливе и приливе, а также уровня жидкости в резервуарах.
Известны два вида уровнемеров, при помощи которых измеряют уровень путем измерения толщины слоя воды по величине давления водяного столба.
Наиболее ранним из известных является барботажный уровнемер. Другим видом уровнемера является уровнемер с погружным датчиком давления. Последний применяется более широко и известен в гидрологии. Эти уровнемеры будем называть уровнемерами по величине давления водяного столба. (Известен подобный уровнемер последней модификации, например, W-445-446; QWP-801 и т.п. в Японии, и барботажный - типа HTL-BO фирмы HITROL).
Большим преимуществом этих уровнемеров по сравнению с другими, например поплавковым уровнемером, является то, что, во-первых, для их установки не требуется вертикальная башня или колодец и, во-вторых, в зимний период, когда в водохранилищах, на реках образуется ледяной покров, с их помощью можно производить измерения уровня воды под ледяным покровом, как это показано на фиг. 1(а) и (b).
В случае уровнемера с погружным датчиком, последний устанавливают на определенной глубине, как это
показано на
фиг. 1(а)
и при помощи него измеряют давление водяного столба (глубины погружения), а в случае барботажного уровнемера устанавливают барботажную трубку, конец которой находится на
определенной
глубине h, и
давление водяного столба измеряют определением давления, требуемого для вытеснения воды из барботажной трубки. Измерив глубину h, определяют уровень воды H по следующей
формуле:
H = H0 - h, (1)
где
H0 - уровень над морем места установки датчика давления или барботажной трубки.
Непосредственно измеряют глубину h, поэтому в дальнейшем пояснение дано только по измерению глубины h воды (или жидкости).
Несмотря на вышеуказанные преимущества по сравнению с другими уровнемерами,
заключающиеся в простоте и
дешевизне установки уровнемера и возможности измерения уровня воды под ледяным покровом, уровнемеры по давлению водяного столба не находят широкого применения для
измерения уровня воды в
водохранилищах и реках, по следующим причинам:
1. Большой погрешности измерения глубины h и, следовательно, уровня воды.
В уровнемере с погружным
датчиком давления на датчик
действует давление:
P = γh+Pa, (2)
откуда глубина воды h будет:
Удельный вес воды γ зависит от температуры воды, например от концентрации наносных взвесей и других факторов.
Распределение температуры воды в озерах и водохранилищах по глубине зависит от сезона года и меняется в пределах 4-25oC. Даже если исходить из того, что вода чистая, и в формулу (3) подставить γ = 10-3 кг/см3, то погрешность измерения глубины h может достигать 0,93%. Поэтому принимают значение удельного веса воды при температуре 18oC (γ = 0,9986•10-3). В этом случае погрешность может достигать 0, 14%. Но при глубине h = 10 м абсолютная погрешность будет составлять Δh = 1,4 см. Кроме того, концентрация наносных взвесей в поводковых периодах может достигать 5 гр/л, что приводит к изменению удельного веса воды на 0,5%. Это означает, что к другим погрешностям измерения при h = 10 м добавляется погрешность, равная 5 см.
Далее, погрешность атмосферного давления на поверхность воды иногда достигает ощутимой величины.
Для компенсации Pa соединяют датчик давления с тонкой трубкой, конец которой находится в пункте измерения уровня с надетым на нем фильтром для того, чтобы в датчик и компенсационную трубку не попадала влага воздуха. Поэтому не происходит полная компенсация Pa, тем более, что пункт измерения уровня находится намного выше поверхности воды и не подвергается воздействию ветра.
В результате погрешность измерения уровня складывается следующим
образом:
δh
≥ (δ+δ
где
δp - погрешность датчика давления,
δγ - погрешность (колебание) удельного веса воды,
δpa - компенсация атмосферного
давления на
поверхность воды.
В результате всего погрешность измерения глубины нередко достигает ± 10 см и более.
При гидрологических наблюдениях опускаемая погрешность измерения уровня воды не должна превышать ± 1 см во всем диапазоне измерения уровня.
При применении барботажного уровнемера
непосредственно измеряемое давление
Pm
будет:
Pm= γh-ΔPm
или
γh = Pm+ΔPm. (5)
О
дополнительном давлении Δ
Pm
подробно будет сказано ниже. Следует только отметить, что ΔPm является давлением воздушного столба в барботажной трубке высотой h0, как это показано на фиг.
1(b), и
является переменной величиной, зависящей от измеряемой глубины h. Если не учитывать ΔPm, то погрешность измерения будет больше получаемой
посредством уровнемера с погружным
датчиком
давления.
2) Другая причина того, что уровнемер с погружным датчиком давления не находит широкого применения, заключается в сложности его эксплуатации.
На датчике давления, погруженном в воду водохранилища или реки, за короткий срок образуется нарост. Он покрывается слоем насоса. Кроме того, датчик давления является высокоточным и поэтому должен периодически подвергаться проверке. Для чистки датчика часто приходится осуществлять подводную работу, а для проверки его необходимо снимать и снова монтировать под водой. По этой причине уровнемер с погружным датчиком редко применяется при гидрологических наблюдениях.
В этом отношении барботажный уровнемер в эксплуатации весьма удобен, так как весь прибор находится над водой. Однако его недостатком является то, что необходимо иметь источник сжатого воздуха или другого газа, но при наличии промышленного тока можно использовать микропроцессор или при его отсутствии можно использовать баллон со сжатым воздухом или азотом. Барботажная трубка при регулярном измерении уровня никогда не засоряется. Барботажный уровнемер будет широко использоваться при гидрологических наблюдениях, если погрешность измерения будет находиться в допустимых пределах, а расход сжатого газа будет настолько мал, что замена баллона потребуется не часто.
Первая цель настоящего изобретения заключается в обеспечении точности измерения удельного веса воды и, тем самым, обеспечения повышения точности измерения уровня воды уровнемером по давлению водяного столба; вторая цель настоящего изобретения заключается в обеспечении точности измерения уровня в широком диапазоне при ограниченной точности датчиков давления; и, наконец, третья цель заключается в обеспечении высокой точности барботажного уровнемера.
Известен способ измерения уровня жидкости посредством измерения давления газа барботирования, заключающийся в том, что устанавливают барботажные трубки так, чтобы их нижние концы располагались на различных глубинах, подают сжатый воздух в барботажные трубки, измеряют давление газа
Технический результат предлагаемого способа измерения уровня жидкости состоит в повышении точности измерения уровня жидкости путем точного определения удельного веса жидкости в широком диапазоне при ограниченной точности датчиков давления.
Для достижения указанного технического результата при способе измерения уровня жидкости посредством измерения давления газа барботирования, заключающемся в том, что устанавливают барботажные трубки так, чтобы их нижние концы располагались на различных глубинах, подают сжатый воздух в барботажные трубки, измеряют давление газа
Разбивают весь диапазон измерения уровня
Hmax - Hmin = ΔH на n поддиапазонов по формуле
Известен также способ измерения уровня жидкости посредством измерения давления газа барботирования, заключающийся в том, что устанавливают барботажные трубки так, чтобы их нижние концы располагались на различных глубинах, через буферную емкость подают сжатый воздух в барботажные трубки до полного вытеснения жидкости из них, прекращают подачу сжатого воздуха, когда давление последнего стабилизируется в буферной емкости, измеряют давление газа
Технический результат предлагаемого способа измерения уровня жидкости состоят в повышении точности измерения уровня жидкости путем снижения погрешности измерения до минимума.
Для достижения указанного технического результата в способе измерения уровня жидкости посредством измерения давления газа барботирования, заключающемся в том, что устанавливают барботажные трубки так, чтобы их нижние концы располагались на различных глубинах, через буферную емкость подают сжатый воздух в барботажные трубки до полного вытеснения жидкости из них, прекращают подачу сжатого воздуха, когда давление последнего стабилизируется в буферной емкости, измеряют давление газа
Кроме того, известен барботажный уровнемер, содержащий источник сжатого воздуха со стабилизированным выходным давлением, первый и второй вентили, датчик давления, первую и вторую барботажные трубки, а также вычислительно-управляющий блок (патент США 4669309, 02.06.87., G 01 F 23/14).
Технический результат предлагаемого изобретения состоит в повышении его эффективности путем обеспечения высокой точности барботажного уровнемера.
Для достижения указанного технического результата барботажный уровнемер, содержащий источник сжатого воздуха со стабилизированным выходным давлением, первый и второй вентили, датчик давления, первую и вторую барботажные трубки, а также вычислительно-управляющий блок, содержит буферную емкость с объемом, составляющим примерно пять внутренних объемов третьей барботажной трубки, соединенной своим входом с третьим вентилем, вход которого соединен с источником сжатого воздуха, а выход буферной емкости соединен через первый и второй вентили соответственно с первой и второй барботажными трубками, нижние концы которых находятся на различных глубинах, причем Δh = h1/2 = h2 /3, первая и вторая барботажные трубки образуют один модуль измерения глубины и уровня воды или жидкости, а на буферной емкости установлены датчик давления и датчик температуры газа в ней, входы которых соединены со входом вычислительно-управляющего блока.
Сущность
изобретения поясняется ниже со ссылками на прилагаемые чертежи, на которых
показано:
Фиг. 1 - поясняющий
способ установки уровнемера с погружным датчиком давления и барботажного уровнемера;
Фиг. 2 - поясняющий способ измерения удельного веса воды
(жидкости) в соответствии с настоящим
изобретением;
Фиг. 3 - поясняющий способ измерения глубины или уровня большого
диапазона с заданной допустимой погрешностью в соответствии с настоящим
изобретением;
Фиг. 4
- распределение давлений в барботажном уровнемере;
Фиг. 5 - график изменения по времени
давления газа (воздуха) в зависимости от расхода газа в барботажном
уровнемере;
Фиг. 6
- устройство для изменения давления водяного столба в соответствии с настоящим изобретением;
Фиг. 7 - график измерения по времени измеряемого давления газа в
барботажном уровнемере в
соответствии с настоящим изобретением;
Фиг. 8 - устройство барботажного уровнемера в соответствии с
настоящем изобретением;
Фиг. 9 - пример барботажного
уровнемера в соответствии с
настоящим изобретением для измерения уровня грунтовых вод;
Фиг. 10 - пример установки трубок для
измерения давления водяного столба барботажного уровнемера для
измерения уровня воды в
водохранилищах и моря при приливе и отливе.
Первая цель изобретения достигается следующим образом.
На фиг. 2(а) показан случай применения
погружного датчика. На
различных глубинах h1 и h2 устанавливаются датчики давления (1'1) и (11). Разность высот двух датчиков Δh = h2
- h1 строго
измеряется и является постоянной величиной. Датчик давления (11) измеряет давление P2=
γ2h2+Pa, а датчик давления
(1'1)
измеряет давление P1= γ1h1+Pa. На участке h1
удельный вес воды γ1 и на участке h2 удельный
вес γ2 будут отличаться между собой, однако γ2 можно записать следующим образом:
В случае применения барботажного способа измерения глубины устанавливаются две барботажных трубки (31) и (41), нижние концы которых находятся на различных глубинах Δh, как это показано на фиг. 2(b). В этом случае удельный вес воды
Погрешность способа измерения удельного веса воды
В зимний период под ледяным покровом перепад температуры воды по глубине значительно меньше, чем Δt = 6oC. Поэтому, можно считать, что значения, приведенные в табл. 1, относятся к худшему случаю.
Как видно из табл. 1, погрешность формулы (рабочей) (7) и (8) составляет 0,05% при h1/Δh≤2, что является достаточным.
С учетом указанной погрешности δ
γ2 , погрешностей измерения разности давлений δΔp и
разности высот δΔh можно
вычислить полную погрешность измерения удельного веса воды Σδ
γ2 по формуле:
Σδγ2=
(δγ2+δ
Δp2+δΔh2)1/2
Эксперименты показали, что легко можно достичь Σδγ2
≈0,1%. Для этого в случае
применения погружных датчиков, необходимо тщательно выбирать два датчика с
одинаковой характеристикой, а в случае барботажа применять один датчик давления, к
которому поочередно подключаются
барботажные трубки (41) и (31).
Подставляя найденное значение удельного веса γ2 по вышеуказанной формуле в формулу измерения глубины (3) или (5) производят измерение глубины h2.
В случае применения
погружного датчика
Погрешность современного датчика давления, который может быть применен в уровнемере с определением по величине давления водяного столба составляет в пределах 0,05-0,1%. Если учесть, что диапазон изменения уровня (глубины) в крупных водохранилищах с высокой плотиной достигает 40-60 м и более, то понятно, что в случае применения датчика давления с верхним пределом измерения, например, до 5 кгf/см2 и погрешностью 0,1%, обеспечить во всем диапазоне измерения глубины допустимую погрешность ±1 см невозможно.
В этом случае вторая цель настоящего изобретения, заключающаяся в обеспечении заданной абсолютной погрешности
Если известна погрешность измерения удельного веса
воды Σδγ2 и
погрешность датчика давления δp, то максимально допустимый диапазон измерения глубины hmax будет
Например, даны
В этом случае измерение уровня для
большого диапазона в соответствии с
настоящим изобретением, выполняется следующим образом:
диапазон измерения уровня ΔH = Hmax - Hmin разбивают на n участков по
формуле:
Подставляя выражение Δh, получим:
В этом случае разность высот
(или глубины) между соседними датчиками
давления или концами барботажных трубок будет
Δh,
Если в момент измерения уровня уровень равен Hmax, то производится измерение
глубины h с помощью первых двух датчиков
давления, установленных на глубинах соответственно
Δh и 2Δh или с помощью первой и второй барботажных трубок, разность между концами которых
равна Δh.
Если уровень воды
упадет и станет H2= Hmax
-Δh+Δ, (где Δ - нижний предел измерения датчика давления, пересчитанный на высоту
водяного столба), то глубину и удельный вес воды
измеряют с помощью второго и третьего погружных
датчиков давления или второй и третьей барботажных трубок. Таким образом, можно обеспечить допустимую
погрешность измерения уровня (глубины) воды,
например
На фиг. 3 приведен пример, когда n = 5, на котором обозначены: (6) - процессор (калькулятор) вычисления hi и Hi, (5) - коммутатор переключения погружных датчиков давления, (7) - коммутатор переключения вентилей, служащих для подключения той или другой пары барботажных трубок к датчику давления. (Источник сжатого газа - не показан).
Высотные отметки погружных датчиков давления (11'), (11), (12'), (12) и (13') или концов барботажных трубок (41), (32), (42), (33) - h02, h03, h04 и ho5, а также реперной высоты для измерения уровня Ho заранее вводят в память процессора (6).
Уровень воды вычисляют по формуле:
Hi = H0 - h0i +
hij
(15)
Если H0 совпадает с начальной
отметкой барботажных трубок, то уровень воды будет
Hi = h0i - hij (16)
Из фиг.
3 следует,
что, в случае применения погружных датчиков, их количество
значительно увеличивается, что приводит к еще большему осложнению ее эксплуатации. В случае применения барботажных трубок этого не
происходит. В качестве барботажной трубки можно применять полимерные
(пластмассовые) трубки диаметром от 2 ≈ 4 мм. Поэтому несколько трубок можно легко связать между собой, причем полимерные
трубки дешевы, не подвергаются "ржавлению", никогда не засоряются, так
как регулярно продуваются сжатым газом или воздухом.
Единственным недостатком является то, что требуется источник сжатого газа или воздуха, но эта проблема легко решается при наличии промышленного электрического тока. При его отсутствии применение баллона с сжатым газом также не представляет затруднения, так как одного баллона достаточно для того, чтобы работать в течение года или даже более.
Главное - это добиться точности барботажного способа измерения глубины (уровня) воды. В этом случае барботажный уровнемер будет шире применяться, чем уровнемер с погружными датчиками вследствие дешевизны самого уровнемера и невысоких эксплуатационных расходов.
Третья цель настоящего изобретения заключается в повышении точности измерения уровня барботажным способом.
На фиг. 4 показано распределение давлений в барботажной трубке в случае вытеснения из нее воды.
До подачи в барботажную трубку (4) избыточного
давления Pm уровень воды в ней равен уровню окружающей ее воды, если пренебречь капиллярным явлением.
В этом случае на
поверхность воды в барботажной трубке будет действовать давление
воздуха
На нижнем конце трубки (4) действует давление
Если вместо вышеприведенных формул применять для измерения h простую формулу h′ = Pm/γ, то погрешность измерения Δh = h - h' будет весьма большой.
В табл. 2
приведены значения погрешностей Δh в см, рассчитанных для случая, когда γ = 10-3
кг/см3, γao = 1,2•10-6 кгf/см3,
Pm = 1 кгf/см2 (h ≈ 10 м) и при различных значениях температуры сжатого воздуха
toC и высотах h0
Приведенные в табл. 2 значения подтверждены экспериментом до h0 = 60 м.
В больших реках, h0 составляет от 15 до 30 м, в водохранилищах h0 достигает 60 ≈ 50 м.
При измерении уровня грунтовых и подземных вод нередко бывает, что h0>100 м.
Поэтому ни в коем случае нельзя не учитывать давление столба газа в барботажной трубке.
Приведенные значения температуры воздуха или газа в расчетных формулах являются средними температурами газа по всей длине барботажной трубки. Однако практически невозможно измерить усредненную температуру, но можно легко произвести измерение в одной точке. Например, установив датчик температуры около датчика давления газа, произвести измерение температуры газа. Как видно из табл. 2, температура газа не оказывает критического влияния, поэтому ее можно измерить с достаточной погрешностью и вставлять в расчетную формулу.
Приведем расчетную
формулу удельного веса воды (жидкости) двумя барботажными трубками, разнесенными на
высоту Δh.
Подставив в формулу (18) или (20) значения Pм2, h02 для h2 и Pм1, h01 для h1 получим:
Подставив значение γ2, вычисленное по формуле (23), в расчетную формулу (19), получим значения глубины h2. В формулу (19) подставляют измеренное значение давления Pм2 и T и постоянные величины
При измерении удельного веса других жидкостей следует заменить 103 в формуле (22) значением N = P0 /γ (см), где γ - ожидаемое значение среднего удельного веса жидкости.
Выше был рассмотрен случай, когда датчик давления газа находится выше над уровнем (поверхностью) воды. Но бывают случаи, когда водохранилище находится выше поста измерения уровня воды или резервуар жидкости находится выше пункта измерения уровня жидкости в нем.
В этом случае
рабочая формула измерения глубины отличается от
вышеприведенных и выглядит следующим образом:
В этом случае удельный вес воды
измеряется по формуле:
Подставляя рабочую формулу измерения удельного веса в рабочую формулу измерения глубины можно получить развернутую рабочую формулу измерения глубины h и соответствующие алгоритм и программу заложить в микропроцессор, однако часто бывает, что нет смысла все время производить измерение удельного веса воды, так как он меняется медленно, например в течение часа. Так, удельный вес подземных вод весьма медленно изменяется, поэтому достаточно его измерять 1 раз в месяц. В водохранилищах и реках в паводковый период следует измерять его 1≈2 раза в сутки, а в остальное время 1 раз в 5 дней. В этом случае можно значительно сэкономить расход сжатого газа в баллоне.
Для повышения точности измерения уровня барботажным способом недостаточно производить измерение удельного веса и использовать вышеприведенную рабочую формулу измерения глубины.
Дело в том, что погрешность измерения глубины зависит от режима подачи сжатого газа.
На фиг. 5 показано изменение давления газа Pm в барботажной трубке в зависимости от внутреннего диаметра трубки d и расхода газа. Как видно из фиг. 5, при большом диаметре трубки di и большом расходе газа (воздуха) g1 давление Pm превышает γh и амплитуда пульсации давления также становится больше по сравнению со значениями для меньших d2 и g2.
В известном барботажном уровнемере промышленного назначения при измерении уровня постоянно выходят пузырьки газа. В 60-х годах и в начале 70-х г совершались попытки в различных странах реализовать барботажный уровнемер для водохранилищ (Pm>2-3 кгf/см2) путем измерения давления Pm на выходе воздушных пузырьков. В этом случае погрешность измерения дополнительно увеличивалась, как это показано на фиг. 5, причем уровень этой погрешности мог превышать 10 см (0,01 кгf/см2 ).
Поэтому в настоящем изобретении предлагается режим подачи сжатого газа и измерения давления газа производить следующим образом.
На фиг. 6 показано устройство барботажного уровнемера, поясняющий режим измерения. На этой фигуре обозначены: (9) - вентиль подачи сжатого воздуха (газа), (8) - буферная емкость (резервуар газа), (2) - датчик давления газа, (11) - датчик температуры газа, (6) вычислительное устройство (микропроцессор) глубины h, (10) - вентиль для выпуска воды, накапливающейся в буферной емкости (8). Источник сжатого газа или воздуха не показан. Барботажный уровнемер работает следующим образом.
Сначала открывают вентиль (9). При этом давление в буферной емкости (8) растет и в конце
начинает слегка пульсировать
(пузырьки газа выходят), как это показано на фиг. 7 с момента времени
t1 (или t'1). В этот момент закрывают вентиль (9). Тогда давление газа Pm падает и с момента
времени t2 (или t'2) стабилизируется. Измеряют
стабилизованное давление газа Pm (пузырьки больше не выходят). Это давление по сравнению с
γh будет ниже на
ΔPм. Рабочая формула измерения h именно учитывает
ΔPм.
Роль буферной емкости (8) заключается в следующем:
1) как видно из
фиг. 7, буферная
емкость приводит к тому, что давление газа медленно падает, а затем
стабилизируется и равняется γh-ΔPм. (В случае переносного варианта применяется ручной
насос, что вызывает
большую пульсацию. В этом случае емкость (8) также гасит пульсацию);
эксперименты показали, что при отсутствии емкости (8) погрешность измерения h велика и отсутствует
повторяемость замеров;
2) обеспечивается удобство измерения температуры газа путем вставки
датчика температуры (11) в емкость (8). При этом температура газа в емкости весьма близка
температуре сжатого газа в барботажной
трубке (4);
3) после первого измерения глубины давления газа в
емкости (8) сохраняется. Поэтому через некоторое время, когда снова производят измерение
уровня, расход газа незначителен,
если уровень за это время поднялся, а в случае падения уровня давление в
емкости (8) падает, следуя падению уровня воды. Таким образом, значительно экономится расход
сжатого газа;
4) в
случае возникновения волн в реках и водохранилищах пульсация давления газа в
емкости (8) значительно меньше, так как она гасит пульсацию уровня воды.
Таким образом, буферная емкость (8) является неотъемлемой частью настоящего изобретения. Объем буферной емкости должен быть не более 5-кратного внутреннего объема барботажной трубки. Если по традиционному способу непрерывно подавать сжатый газ, то в зависимости от глубины (уровня) меняется давление водяного столба γh и следовательно расход сжатого газа также меняется. Вследствие этого погрешность измерения h значительно изменяется, и расход газа не поддается регулировке для одной глубины, с целью снижения погрешности до минимума.
В соответствии с настоящим изобретением независимо от подаваемого давления сжатого газа и от измеряемой глубины обеспечивается измерение барботажного давления Pм-ΔPм, а благодаря применению точных рабочих формул измерения глубины достигается высокая точность измерения уровня. В результате барботажный уровнемер может быть широко применен в качестве переносного уровнемера, стационарного уровнемера для телеизмерения или самописца уровня воды (жидкости), изменяющегося в широком диапазоне.
На фиг. 8 приведена схема барботажного уровнемера, позволяющая реализовать вышеперечисленные способы измерения уровня.
На фиг. 8 обозначены: (12) - клапан-стабилизатор давления, обеспечивающий заданное значение давления газа на его выходе; (13) - источник сжатого газа - компрессор или баллон сжатого газа, (10) - вентиль для выпуска воды из буферной емкости (8); (91), (92), (93) - управляемые вентили, например, снабженный электромагнитными (coil valve), (7) - устройство, управляющее вентилями (91), (92) и (93).
Устройство работает следующим образом.
В начальном положении вентили (93) и (91) закрыты, а вентиль (92), соединенный с барботажной трубкой (4), открыт.
В момент измерения по команде управляющего устройства (7) открывается вентиль (93), и сжатый газ поступает в буферную емкость (8) и в барботажную трубку (4). По истечении заданного времени t1 по сигналу (7) закрывается вентиль (93) и по истечении определенного времени t2 (см. фиг.7) производят измерение давления газа с помощью датчика давления (2) и температуры газа с помощью датчика температуры (11), т.е. измеряют
Процессор (6) производит вычисление удельного веса γ, глубины h и уровня H по заданной программе, составленной в соответствии с вышеприведенными рабочими формулами. В процессоре (6) записаны все постоянные величины (H0, ho2 ,
На фиг. 8 не показана линия связи между процессором (6) и управляющим устройством (7), так как (6) может одновременно выполнять функцию (7) или же они могут функционировать раздельно. На выходе процессора (6) в случае телеизмерения выдается кодовый сигнал, а в случае применения самописца ему выдается соответствующий сигнал, например аналоговый. Самописец также может содержать дисплей.
На фиг. (8) показана защитная трубка (14) для барботажных трубок (3) и (4) и, в случае, когда высота волн велика, например, при измерении уровня морской воды при отливе и приливе, к концу защитной трубки (14) присоединена трубка (15), внутренний диаметр которой меньше внутреннего диаметра защитной трубки (14) и, тем самым, трубка (14) играет роль гасителя волны.
В качестве барботажных трубок применяются пластмассовые, например, полиуретановые трубки с внутренним диаметром от 2 до 4 мм. Эти трубки (3) и (4) могут быть прикреплены к защитной трубке (14).
На фиг. 9 показано устройство для измерения уровня грунтовых или подземных вод.
Барботажные трубки (3) и (4) крепятся к тросу, выполненному из нержавеющих стальных нитей (17), к концу которого прикреплено грузило (16). Трос (17) с грузилом (16) и прикрепленными барботажными трубками (3) и (4) опускается до заданной глубины по трубе наблюдательной скважины (18) и крепится в верхней части (18). Так как уровень подземных вод измеряется с достаточно большим интервалом времени (часто обходчиком), то буферная емкость (8) с вентилями (91), (92), (93) и барботажные трубки (3) и (4) с тросом (17) и (16) оставляются постоянно, а процессор с дисплеем и датчиками давления (2) и температуры (11) является переносным прибором. В качестве источника сжатого воздуха используется ручной насос, который соединяется с вентилем (93). Вентили управляются вручную.
В случае телеизмерения или использования самописца необходимо присутствие всех узлов, показанных на фиг. 8.
Из фиг. 9 видно, что по сравнению с уровнемером с погружным датчиком давления установка барботажных трубок намного проще и они настолько дешевы по сравнению с кабелем и встроенной трубкой для компенсации атмосферного давления, что их можно оставлять в наблюдательной скважине, а с собой брать малогабаритный процессор-измеритель уровня и ручной насос.
На фиг. 10 показан пример установки барботажных трубок в море или водохранилищах. К защитной трубке (14), содержащей барботажные трубки, на определенных расстояниях прикреплены якоревидные грузила (19). На судне (20) установлен барабан с намотанной на нем трубкой (14). При движении к берегу с барабана разматывается трубка 14, которая укладывается на дне моря или водохранилища.
В отличие от уровнемера с погружным датчиком вместо дорогостоящей подводной кабельной линии устанавливаются барботажные трубки, которые дешевле и удобнее и, самое главное, под водой нет никаких приборов, а барботажные трубки не засоряются при регулярном измерении уровня воды.
Расход сжатого газа (или воздуха) также незначителен. Если длина барботажной трубки равна 100 м с внутренним диаметром 4 мм, то расход газа при однократном измерении уровня, переведенный в нормальное состояние, составляет не более 1,5 l (л), а для измерения удельного веса воды не требуется дополнительного расхода газа, так как он расходуется из буферной емкости.
Поэтому, если применять 25-литровой баллон с сжатым газом с давлением 50 кгf/см2, то измерения можно производить около 800 раз. Если измерение уровня производится 2 раза в сутки, как принято в гидрологии, то одного баллона будет достаточно на 400 дней. Если применять компрессор воздуха, то достаточно использовать микропроцессор, обеспечивающий давление до 1 кгf/см2.
Практика применения барботажного уровнемера, в котором реализуются способы настоящего изобретения, показала, что в диапазоне изменения глубины h в пределах от 0,1 до 9,5 м абсолютная погрешность измерения во всем диапазоне не превышала ± 5 мм.
Способ измерения уровня воды или жидкости и барботажный уровнемер используется для измерения уровня воды в водохранилищах, реках и наблюдательных скважинах грунтовых и подземных вод, а также уровня жидкости в больших резервуарах. Измеряют давление водяного столба с помощью барботажных трубок, нижние концы которых располагают на разных глубинах. Вычисляют удельный вес жидкости. Измерение давления барботажа производят после прекращения подачи сжатого газа одновременно с измерением температуры газа в барботажной трубке. При измерениях глубины жидкости производится полная компенсация давления столба газа в барботажной трубке. Вычисляют значение уровня жидкости над уровнем моря или относительно какой-либо реперной высоты. Барботажный уровнемер содержит три барботажные трубки, источник сжатого газа, три вентиля. В буферной емкости установлены датчик давления и датчик температуры, входы которых соединены со входом вычислительно-управляющего блока. Повышена точность измерения. 3 с. и 4 з.п. ф-лы, 10 ил., 2 табл.