Код документа: RU2615200C1
Настоящее изобретение относится к области строительных материалов, в частности к жаростойким бетонам, предназначенным для применения в конструкциях, подверженных воздействию температуры до плюс 1100°C, например для футеровки обжиговых печей.
Известны жаростойкие бетоны, содержащие вяжущее (жидкое стекло), заполнитель (керамзитовый, шамотный, вермикулитовый и т.д.), тонкомолотую добавку (шамотную, магнезитовую) и отвердитель (фтористый натрий, феррохромовый шлак, нефелиновый шлам). (См. К.Д. Некрасов, М.Г. Масленникова. Легкие жаростойкие бетоны на пористых заполнителях. М.: Стройиздат, 1982, с. 94-125).
Недостатками таких бетонов являются низкая прочность и, следовательно, ограниченная сфера применения.
Наиболее близким по технической сущности к заявляемому изобретению является бетон (патент RU №2187482, С04В 18/14; 2002.08.20), содержащий жидкое стекло, тонкомолотый шамот, феррохромовый шлак, гальваношлам, шамотный заполнитель, в виде ошлакованного нефракционированного шамотного лома, при следующем соотношении ингредиентов, мас.%:
Известный бетон имеет недостаточно высокую прочность, что приводит к ограничению применения такого бетона в печестроении.
Настоящее изобретение направлено на создание нового конструкционного жаростойкого бетона с более высокой прочностью при одновременной утилизации промышленных отходов.
Поставленная техническая задача достигается тем, что жаростойкий бетон, содержащий жидкое стекло, тонкомолотый шамот, феррохромовый шлак, дополнительно содержит дробленый шлак от алюминотермитной сварки железнодорожных рельсов с размером зерен от 0,01 до 20 мм.
Указанные ингредиенты взяты в следующих соотношениях, мас.%:
На дату подачи заявки, по мнению авторов и заявителя, заявляемый жаростойкий бетон не известен и данное техническое решение обладает новизной.
Заявляемая совокупность существенных признаков проявляет новое свойство, которое позволяет получить технический результат.
Совместное присутствие дробленого шлака от алюминотермитной сварки железнодорожных рельсов, тонкомолотой добавки, феррохромового шлака и жидкого стекла приводит к твердению бетона, а также к формированию контактных зон по границе раздела огнеупорная матрица - зерна шлака, что приводит к упрочнению бетона при обжиге и повышению прочности при сжатии.
Оптимальное содержание дробленого шлака от алюминотермитной сварки железнодорожных рельсов, состоящего на 90% из герцинита и оксида алюминия, - 57,5%. При выходе за нижний предел оптимального содержания понижается прочность, а при выходе за верхний предел снижается удобоукладываемость бетона.
В качестве связующего используется жидкое стекло: Na2SiO3*nH2O (ГОСТ 13078-81, ТУ 113-08-00206457-28-93), с плотностью 1,38 г/см3.
Тонкомолотый шамот получают путем помола в шаровых мельницах шамотного лома до остатка на сите №014 не более 1%.
Феррохромовый шлак является побочным продуктом металлургической промышленности и состоит в основном из β и γ-C2S, мервинита и до 10% железохромовой шпинели и хромата кальция.
Учитывая вышеизложенное, можно сделать вывод, что предлагаемый состав бетона явным образом не следует из уровня техники, и вся совокупность существенных признаков проявляет новое свойство, позволяющее достичь указанный технический результат, т.е. изобретение соответствует критерию охраноспособности - "изобретательский уровень".
Заявляемое изобретение соответствует критерию «промышленная применяемость», т.к. оно может быть использовано в промышленном изготовлении конструкционных жаростойких блоков с повышенной прочностью, применяемых в печестроении с температурой применения до плюс 1100°C.
Пример конкретного выполнения.
Изготовление жаростойкого бетона.
1. Производят дробление шлака от алюминотермитной сварки железнодорожных рельсов до размера частиц от 0,01 до 20 мм, и помол шамотного лома до остатка на сите №014 не более 1%.
2. Дозируют сухие компоненты смеси и тщательно перемешивают.
3. Дозируют жидкое стекло с плотностью 1,38 г/см3.
4. Приготавливают бетонную смесь, смешивая отдозированные компоненты в бетономешалке в течение 3-5 минут.
5. Жаростойкая бетонная смесь используется для изготовления изделий требуемой формы и образцов для проведения физико-механических испытаний методом литья.
6. Твердение бетона осуществляется в течение 1 суток в нормальных условиях.
7. Затвердевшие изделия вынимают из форм и проводят термообработку в течение суток при температуре плюс 110°C.
8. Высушенные изделия готовы к эксплуатации.
Для определения физико-механических характеристик бетона вручную изготавливались кубы размером 100×100×100 мм, сушились при плюс 110°C и обжигались при температуре плюс 1100°C.
После обжига определяли физико-технические показатели образцов: по ГОСТ 20910-90.
Физико-механические характеристики жаростойкого бетона представлены в таблице.
Анализ данных показывает, что предлагаемый состав обеспечивает получение жаростойкого бетона с более высокой прочностью, следовательно, расширяется диапазон применения.
При получении жаростойкого бетона заявляемого состава дополнительно используется побочный продукт - шлак от алюминотермитной сварки железнодорожных рельсов, что благоприятно сказывается на экологической обстановке, а также снижает себестоимость продукции.
Изобретение относится к строительным материалам и может быть использовано для футеровки обжиговых вагонеток и при строительстве печей. Технический результат заключается в повышении прочности бетона. Жаростойкий бетон содержит жидкое стекло, тонкомолотый шамот, феррохромовый шлак, дробленый шлак от алюминотермитной сварки железнодорожных рельсов с размером зерен от 0,01 до 20 мм, на 90% состоящий из герцинита и оксида алюминия, при следующих соотношениях компонентов, мас.%: жидкое стекло - 23-25, тонкомолотый шамот - 13-14, феррохромовый шлак - 4-6, указанный шлак 55-60. 1 табл.