Код документа: RU2354447C2
Настоящее изобретение относится к псевдоизотермическому химическому реактору для проведения гетерогенных химических реакций, имеющему, по существу, цилиндрический корпус, закрытый с противоположных концов соответственно верхним и нижним днищами, расположенную в корпусе зону реакции со слоем катализатора и по меньшей мере один закрепленный в зоне реакции теплообменный блок, состоящий из нескольких теплообменников.
Известно, что для оптимального завершения экзотермических или эндотермических химических реакций необходимо отводить из зоны реакции или соответственно подводить в зону реакции тепло и таким путем поддерживать температуру реакции вблизи заданного теоретического значения.
Известно также, что для этой цели широко используют расположенные в зоне реакции (обычно в слое катализатора) теплообменники самого разного типа, через которые непрерывно пропускают соответствующий рабочий текучий теплоноситель.
Хорошие результаты, в частности, были подучены при использовании так называемых "пластинчатых" теплообменников, т.е. теплообменников, состоящих из двух параллельных, обычно прямоугольных, отстоящих друг от друга и сваренных по периметру листов, образующих внутреннюю полость теплообменника, через которую пропускают текучий теплоноситель.
При всех своих несомненных преимуществах такие пластинчатые теплообменники обладают и определенным недостатком, заключающимся в том, что они не выдерживают большой разности внутреннего и наружного давлений и поэтому во время работы деформируются и гнутся. При этом достаточно часто в результате деформации происходит изменение размеров поперечного сечения внутренней полости теплообменника и, как следствие этого, изменение по сравнению с расчетной его теплообменной способности, снижение точности регулирования псевдоизотермичности реакции и в конечном итоге соответствующее снижение выхода реакции.
В основу настоящего изобретения была положена задача разработать псевдоизотермический химический реактор с теплообменным блоком, конструктивные и функциональные характеристики которого позволяли бы устранить перечисленные выше недостатки известных теплообменников, или, иными словами, с теплообменным блоком, теплообменники которого были бы способны выдерживать расчетную или случайно возникающую большую разность между давлением текучего теплоносителя внутри теплообменника и наружным давлением в зоне реакции.
Указанная выше задача решается с помощью псевдоизотермического химического реактора для проведения гетерогенных химических реакций, имеющего, по существу, цилиндрический корпус с продольной осью (Z-Z), расположенную внутри корпуса зону реакции и по меньшей мере один теплообменный блок, удерживаемый в зоне реакции и состоящий из множества теплообменников, по меньшей мере один из которых состоит из змеевика, изготовленного из одной трубы, габаритные размеры которого соответствуют телу в форме уплощенного параллелепипеда (телу плоской формы), причем теплообменный блок, состоящий из множества змеевиковых теплообменников, имеет форму цилиндра, расположенного концентрично по оси зоны реакции, в которой он удерживается, причем теплообменники расположены в теплообменном блоке радиально.
В предпочтительном варианте такой змеевиковый теплообменник состоит из множества параллельных трубчатых прямолинейных участков, последовательно соединенных друг с другом соответствующими изогнутыми коленами.
В подобном змеевиковом теплообменнике его отдельные прямолинейные участки имеют одну и ту же длину и их продольные оси лежат в одной и той же плоскости. Изогнутые колена могут иметь полукруглую форму.
Прямолинейные участки теплообменников могут быть расположены в зоне реакции радиально или параллельно оси корпуса.
В одном из вариантов теплообменники в теплообменном блоке расположены радиально объединенными в несколько концентричных, расположенных на одной оси групп.
По меньшей мере один теплообменник может имеет дополнительную трубу для подачи в него текучего теплоносителя, соединенную со змеевиком в заданном промежуточном месте.
Прямолинейные участки теплообменников могут быть также расположены параллельно диаметру корпуса и теплообменники расположены в воображаемых эквидистантных параллельных плоскостях. При этом колена теплообменников расположены по касательной к воображаемым цилиндрическим поверхностям, и их радиус кривизны равен внутреннему радиусу корпуса, а центры расположены на внутреннем диаметре корпуса.
Другие отличительные особенности и преимущества изобретения более подробно рассмотрены ниже со ссылкой на прилагаемые к описанию чертежи на примере одного из иллюстрирующих, но не ограничивающих объем изобретения вариантов возможного выполнения предлагаемого в изобретении химического реактора.
На прилагаемых к описанию чертежах показано:
на фиг.1 - вид в аксонометрии и в разрезе предлагаемого в изобретении реактора,
на фиг.2 - аналогичный приведенному на фиг.1 вид в аксонометрии реактора, выполненного по другому варианту,
на фиг.3 - схематичный вид в увеличенном масштабе теплообменника реактора, изображенного на фиг.1,
на фиг.4 - схематичный вид в сечении плоскостью IV-IV изображенного на фиг.3 теплообменника предлагаемого в изобретении реактора,
на фиг.5 - аналогичный приведенному на фиг.3 схематичный вид теплообменника, выполненного по другому варианту,
на фиг.6 - схематичный вид в разрезе реактора, выполненного по другому варианту, и
на фиг.7 - схематичный вид фрагмента реактора, выполненного в соответствии с показанным на фиг.6 вариантом.
На фиг.1 показан обозначенный позицией 1 псевдоизотермический химический реактор, предлагаемый в настоящем изобретении.
Реактор 1 имеет цилиндрический корпус 2, закрытый с противоположных концов соответственно верхним 3 и нижним 4 днищами с патрубками 16 и 17 соответственно для подачи в реактор исходных, в частности газообразных, реагентов и отбора из реактора продуктов реакции. В корпусе 2 реактора находится зона 5 реакции, в которой расположен (не показанный на чертеже) слой катализатора с теплообменным блоком 6, состоящим из нескольких теплообменников 7 и определенным образом закрепленным внутри реактора.
В соответствии с первой отличительной особенностью настоящего изобретения каждый теплообменник 7 выполнен в виде змеевика (фиг.3, 4), изготовленного из одной трубы определенного диаметра в форме, по существу, плоского параллелепипеда. Змеевик имеет параллельные прямолинейные участки 8 равной длины, последовательно соединенные друг с другом полукруглыми коленами 9. Прямолинейные участки 8 теплообменника предпочтительно должны быть расположены в одной плоскости на равном расстоянии друг от друга.
В соответствии с другой отличительной особенностью настоящего изобретения змеевиковые теплообменники 7 должны быть расположены в зоне 5 реакции таким образом, чтобы их соответствующие прямолинейные участки 8 лежали в одной радиальной плоскости корпуса 2 реактора.
Состоящий из радиально расположенных теплообменников 7 теплообменный блок 6 реактора имеет, по существу, форму цилиндра, расположенного концентрично вокруг центральной оси зоны 5 реакции.
В реакторе, выполненном по другому варианту (фиг.2), теплообменный блок 6 состоит из нескольких (в данном примере трех) концентричных групп радиальных теплообменников 7, расположенных одна внутри другой вокруг продольной оси зоны реакции.
Во время работы реактора через змеевиковые теплообменники 7 пропускают соответствующий текучий теплоноситель. Текучий теплоноситель в теплообменники подают через подводящие трубки 12, соединенные с кольцевым распределительным коллектором 11, который, в свою очередь, соединен с подводящей трубой 10, конец которой выходит из реактора 1 наружу через верхнее днище 3.
Снизу теплообменники 7 соединены с отводящими трубками 15, которые через кольцевой коллектор 14 (фиг.1) или соответствующие кольцевые трубы 14 (фиг.2) соединены трубой 14а с отводящей трубой 13, конец которой выходит из реактора 1 наружу через его нижнее днище 4.
Выполненные таким образом в псевдоизотермических химических реакторах теплообменники, которые по своим габаритам не отличаются от известных в настоящее время пластинчатых теплообменников, могут надежно работать при большой разнице внутреннего и внешнего давлений в зоне реакции.
Другим преимуществом предлагаемых в изобретении теплообменников, которые по габаритным размерам не отличаются от обычных пластинчатых теплообменников, является их сравнительно большая поверхность теплообмена и, как следствие этого, большая эффективность теплообмена между текучим теплоносителем и зоной реакции.
В другом варианте, показанном на фиг.5, каждый трубчатый змеевиковый теплообменник 7 имеет трубу 18, предназначенную для подачи в него по меньшей мере в одном фиксированном месте дополнительного количества текучего теплоносителя. Труба 18 предпочтительно соединяется с коленом 9 теплообменника 7. Дополнительная подача текучего теплоносителя позволяет более точно регулировать температуру внутри теплообменников 7 и, как следствие этого, более точно контролировать процесс теплообмена и псевдоизотермичность протекающей в зоне 5 реакции и в конечном итоге повысить выход реактора.
Еще в одном варианте выполнения реактора прямолинейные участки 8 его змеевиковых теплообменников 7 расположены в зоне 5 реакции не радиально, как в описанных выше вариантах, а параллельно диаметру корпуса 2 (фиг.6 и 7).
Изображенные на этих чертежах реакторы не требуют отдельного описания, поскольку конструктивно и функционально не отличаются от описанных выше реакторов, а их основные детали и элементы обозначены теми же позициями, что и на предыдущих чертежах.
В этом варианте (фиг.6) теплообменники 7 расположены в воображаемых эквидистантных параллельных плоскостях.
Кроме того (фиг.7), в этом варианте колена 9 теплообменников расположены по касательной к цилиндрическим поверхностям 22, 23, 24, 25, 26, 27, и их радиус кривизны равен внутреннему радиусу корпуса 2, а центры расположены на внутреннем диаметре D1 корпуса.
В реакторе, предлагаемом в этом варианте осуществления изобретения, при одинаковых размерах всех змеевиковых теплообменников 7 можно более эффективно контролировать псевдоизотермичность протекающей в нем химической реакции при большой разности давления внутри теплообменников и давления в зоне реакции.
Изобретение не ограничено рассмотренными выше вариантами его осуществления и не исключает возможности внесения в них различных изменений и усовершенствований в объеме формулы изобретения.
Еще в одном не показанном на чертежах варианте осуществления изобретения прямолинейные участки 8 змеевиковых теплообменников 7 могут располагаться параллельно продольной оси Z-Z корпуса 2 реактора.
Такое расположение теплообменников в реакторе 1 позволяет эффективно контролировать псевдоизотермичность реакции при прохождении исходных реагентов через зону реакции не в осевом, а в радиальном направлении.
В реакторе, предлагаемом в этом варианте осуществления изобретения, распределительный коллектор 11 и отводящий коллектор 14 расположены на концентричных окружностях, а соединенные с ними подводящими трубками 12 и отводящими трубками 15 теплообменники 7 могут свободно перемещаться в противоположных направлениях относительно коллекторов 11 и 14.
Такая конструкция позволяет значительно уменьшить механические напряжения, возникающие в коллекторах 11 и 14 при тепловых деформациях работающих при высоких температурах теплообменников 7.
Изобретение относится к аппаратам химической промышленности, а именно псевдоизотермическому химическому реактору для проведения гетерогенных химических реакций. Реактор содержит цилиндрический корпус, закрытый с противоположных концов днищами. В зоне реакции расположен, по меньшей мере, один слой катализатора и, по меньшей мере, один погруженный в него теплообменный блок. Блок состоит из множества радиально расположенных теплообменников и имеет форму цилиндра. По меньшей мере, один из теплообменников выполнен в виде змеевика, изготовленного из одной трубы в форме уплощенного параллелепипеда. Теплообменники такого теплообменного блока способны выдерживать большую разность между давлением текучего теплоносителя внутри него и наружным давлением в зоне реакции. 10 з.п. ф-лы, 7 ил.