Система и способ определения направления и пространственного разнесения траекторий волокон для композитного слоя - RU2018116019A

Код документа: RU2018116019A

Формула

1. Способ определения направления и пространственного разнесения траекторий волокон для композитного слоя композитной укладки при заданных определении поверхности и определении углов волокон, имеющем один или более углов волокон, включающий следующие этапы:
формирование аппроксимации поверхности для определения поверхности, содержащей триангулированную поверхность, включающей сетку треугольников, причем композитный слой имеет по меньшей мере одну из следующих характеристик: определение поверхности имеет неплоский контур, определение углов волокон содержит непостоянные углы волокон;
определение на триангулированной поверхности первого поля единичных векторов, устанавливающего направление 0 градусов для каждого из треугольников, при этом направление 0 градусов является направлением, относительно которого измеряют указанные один или более углов волокон;
определение на триангулированной поверхности второго поля единичных векторов посредством поворота на указанные один или более углов волокон, заданных в определении углов волокон, первого поля единичных векторов вокруг нормалей к поверхности, соответственно соотнесенных с треугольниками;
определение на триангулированной поверхности третьего поля единичных векторов, представляющего направление градиента потенциальной функции, посредством поворота второго поля единичных векторов на 90° вокруг соответствующих нормалей к поверхности;
определение функции величины для масштабирования третьего поля единичных векторов по триангулированной поверхности с созданием поля неединичных векторов для обеспечения возможности подбора потенциальной функции с приближением ко второму полю единичных векторов, посредством минимизации ротора поля неединичных векторов;
определение потенциальной функции, имеющей контурные линии, при этом потенциальная функция является первой потенциальной функцией, определенной выполнением подбора методом наименьших квадратов таким образом, что направление и величина градиента первой потенциальной функции наилучшим образом аппроксимируют направление и функцию величины поля неединичных векторов;
выполнение нормализации потенциальной функции применением масштабирующей функции к потенциальной функции таким образом, что контурные линии равномерно распределены по триангулированной поверхности; и
использование контурных линий нормализованной потенциальной функции в качестве траекторий волокон для укладки рядов композиционного материала вдоль траекторий волокон для изготовления композитного слоя.
2. Способ по п. 1, также включающий этап:
определения второй потенциальной функции, которая улучшает выравнивание контурных линий со вторым полем единичных векторов посредством минимизации отклонения между направлением поля неединичных векторов и направлением градиента потенциальной функции, также выполняя корректировку функции величины, масштабирующей третье поле единичных векторов.
3. Способ по п. 1, также включающий этап:
определения третьей потенциальной функции, которая улучшает выравнивание контурных линий со вторым полем единичных векторов посредством минимизации только отклонения между направлением третьего поля единичных векторов и направлением градиента потенциальной функции.
4. Способ по п. 1, согласно которому на этапе определения второго поля единичных векторов на триангулированной поверхности:
определение углов волокон содержит постоянные углы слоя.
5. Способ по п. 1, также включающий:
сглаживание потенциальной функции посредством минимизации вариации величины градиента потенциальной функции.
6. Способ по п. 1, согласно которому контурные линии являются несвязанными по триангулированной поверхности и, после определения потенциальной функции, способ также включает:
разделение аппроксимации поверхности на области вдоль контурных линий потенциальной функции таким образом, что все контурные линии в каждой области соединены.
7. Способ по п. 1, согласно которому этап выполнения нормализации потенциальной функции включает:
применение масштабирующей функции к потенциальной функции для корректировки значений потенциальной функции таким образом, что инверсия величины градиента вдоль каждой контурной линии в среднем эквивалентна ширине головки автоматизированной установки для укладки волокон.
8. Способ по п. 1, согласно которому этап выполнения нормализации потенциальной функции включает:
применение масштабирующей функции к потенциальной функции для корректировки значений потенциальной функции таким образом, что инверсия минимальной величины градиента вдоль каждой контурной линии не превышает ширины головки автоматизированной установки для укладки волокон, чтобы избежать зазоров между соседними рядами.
9. Способ по п. 1, согласно которому контурные линии нормализованной потенциальной функции имеют пространственное разнесение, и который также включает этап:
регулировки ширины одного или более рядов, чтобы они были меньше, чем пространственное разнесение между контурными линиями, чтобы избежать перекрытия соседних рядов.
10. Способ определения направления и пространственного разнесения траекторий волокон для композитного слоя композитной укладки при заданных определении поверхности и определении углов волокон, имеющем один или более углов волокон, включающий следующие этапы:
формирование аппроксимации поверхности для определения поверхности, содержащей триангулированную поверхность, включающей сетку треугольников, причем композитный слой имеет по меньшей мере одну из следующих характеристик: определение поверхности имеет неплоский контур, определение углов волокон содержит непостоянные углы волокон;
определение на триангулированной поверхности первого поля единичных векторов, устанавливающего направление 0 градусов для каждого из треугольников, при этом направление 0 градусов является направлением, относительно которого измеряют указанные один или более углов волокон;
определение на триангулированной поверхности второго поля единичных векторов посредством поворота на указанные один или более углов волокон, заданных в определении углов волокон, первого поля единичных векторов вокруг нормалей к поверхности, соответственно соотнесенных с треугольниками;
определение на триангулированной поверхности третьего поля единичных векторов, представляющего направление градиента потенциальной функции, посредством поворота второго поля единичных векторов на 90° вокруг соответствующих нормалей к поверхности;
определение функции величины для масштабирования третьего поля единичных векторов по триангулированной поверхности с созданием поля неединичных векторов для обеспечения возможности подбора потенциальной функции с приближением ко второму полю единичных векторов, посредством минимизации ротора поля неединичных векторов;
определение потенциальной функции в качестве первой потенциальной функции, имеющей контурные линии, при этом первую потенциальную функцию определяют выполнением подбора методом наименьших квадратов таким образом, что направление и величина градиента первой потенциальной функции наилучшим образом аппроксимируют направление и функцию величины поля неединичных векторов;
выполнение нормализации потенциальной функции применением масштабирующей функции к потенциальной функции таким образом, что контурные линии потенциальной функции равномерно распределены по триангулированной поверхности; и
использование контурных линий нормализованной потенциальной функции в качестве траекторий волокон в программе укладки, которую выдают в автоматизированную установку для укладки волокон, имеющую аппликаторную головку, выполненную с возможностью укладки рядов композитной ленты вдоль траекторий волокон.
11. Процессорная система для определения направления и пространственного разнесения траекторий волокон для композитного слоя композитной укладки при заданных определении поверхности композитного слоя и определении углов волокон, имеющем один или более углов волокон, содержащая:
аппроксиматор поверхности, выполненный с возможностью формирования аппроксимации поверхности для композитного слоя, содержащей триангулированную поверхность, включающей сетку треугольников, представляющую определение поверхности, причем композитный слой имеет по меньшей мере одну из следующих характеристик: определение поверхности имеет неплоский контур, определение углов волокон содержит непостоянные углы волокон;
определитель векторного поля, выполненный с возможностью:
определения на триангулированной поверхности первого поля единичных векторов, устанавливающего направление 0 градусов для каждого из треугольников, при этом направление 0 градусов является направлением, относительно которого измеряют указанные один или более углов волокон;
определения на триангулированной поверхности второго поля единичных векторов посредством поворота на указанные один или более углов волокон, заданных в определении углов волокон, первого поля единичных векторов вокруг нормалей к поверхности, соответственно соотнесенных с треугольниками;
определения на триангулированной поверхности третьего поля единичных векторов, представляющего направление градиента потенциальной функции, посредством поворота второго поля единичных векторов на 90° вокруг соответствующих нормалей к поверхности;
минимизатор ротора, выполненный с возможностью определения функции величины для масштабирования третьего поля единичных векторов по триангулированной поверхности с созданием поля неединичных векторов для обеспечения возможности подбора потенциальной функции с приближением ко второму полю единичных векторов, посредством минимизации ротора поля неединичных векторов;
определитель потенциальной функции, выполненный с возможностью определения потенциальной функции в качестве первой потенциальной функции выполнением подбора методом наименьших квадратов таким образом, что направление и величина градиента первой потенциальной функции наилучшим образом аппроксимируют направление и функцию величины поля неединичных векторов на триангулированной поверхности, при этом потенциальная функция имеет контурные линии;
нормализатор потенциальной функции, выполненный с возможностью осуществления нормализации потенциальной функции применением масштабирующей функции к потенциальной функции таким образом, что контурные линии равномерно распределены по триангулированной поверхности посредством задания постоянных значений потенциальной функции, которые изменяются с фиксированными интервалами между соседними парами контурных линий; и
определитель программы укладки, выполненный с возможностью использования контурных линий нормализованной потенциальной функции в качестве траекторий волокон в программе укладки для изготовления композитного слоя посредством укладки рядов композитной ленты, которые проходят по траекториям волокон, с образованием таким образом композитного слоя.
12. Процессорная система по п. 11, в которой:
определитель потенциальной функции выполнен с возможностью определения второй потенциальной функции, которая улучшает выравнивание контурных линий со вторым полем единичных векторов посредством минимизации отклонения между направлением поля неединичных векторов и направлением градиента второй потенциальной функции, выполняя также корректировку функции величины, масштабирующей третье поле единичных векторов.
13. Процессорная система по п. 11, в которой:
определитель потенциальной функции выполнен с возможностью определения третьей потенциальной функции, которая улучшает выравнивание контурных линий со вторым полем единичных векторов посредством минимизации только отклонения между направлением третьего поля единичных векторов и направлением градиента потенциальной функции.
14. Процессорная система по п. 11, в которой:
определитель векторного поля выполнен с возможностью установления первого поля единичных векторов посредством проецирования розеточного вектора физического пространства на триангулированную поверхность.
15. Процессорная система по п. 11, в которой:
определитель векторного поля выполнен с возможностью установления второго поля единичных векторов на триангулированной поверхности на основании определения углов волокон, содержащего постоянные углы слоя.
16. Процессорная система по п. 11, в которой:
определитель векторного поля выполнен с возможностью установления второго поля единичных векторов на триангулированной поверхности на основании определения углов волокон, получаемого исходя из функции координат триангулированной поверхности.
17. Процессорная система по п. 11, в которой:
по меньшей мере одна из контурных линий является несвязанной по триангулированной поверхности; и
нормализатор потенциальной функции выполнен с возможностью сглаживания потенциальной функции посредством минимизации вариации величины градиента потенциальной функции.
18. Процессорная система по п. 11, в которой:
по меньшей мере одна из контурных линий является несвязанной по триангулированной поверхности; и
нормализатор потенциальной функции выполнен с возможностью распределения контурных линий по триангулированной поверхности посредством разделения аппроксимации поверхности на области вдоль контурных линий потенциальной функции таким образом, что все контурные линии в каждой области соединены.
19. Процессорная система по п. 11, в которой:
нормализатор потенциальной функции выполнен с возможностью применения масштабирующей функции к потенциальной функции для корректировки значений потенциальной функции таким образом, что инверсия величины градиента вдоль каждой контурной линии в среднем эквивалентна ширине головки автоматизированной установки для укладки волокон.
20. Процессорная система по п. 11, в которой:
нормализатор потенциальной функции выполнен с возможностью применения масштабирующей функции к потенциальной функции для корректировки значений потенциальной функции таким образом, что инверсия минимальной величины градиента вдоль каждой контурной линии не превышает ширины головки автоматизированной установки для укладки волокон.

Авторы

Заявители

СПК: B29C70/382 B29C70/386 B29C70/54 B29K2105/0881 G01B21/16 G06F17/10 G06F30/15 G06F30/20 G06F2113/24 G06F2113/26 G06F2119/18

Публикация: 2019-10-28

Дата подачи заявки: 2018-04-27

0
0
0
0
Невозможно загрузить содержимое всплывающей подсказки.
Поиск по товарам