Формула
1. Способ определения местоположения (xM) единичных молекул (5) вещества в образце (2),
причем эти единичные молекулы (5) вещества находятся во флуоресцентном состоянии, в котором они способны возбуждаться светом возбуждения (23) для испускания света (27) флуоресценции,
причем расстояние между единичными молекулами (5) вещества в интересующей области (1) образца (2) поддерживается на минимальном значении, и
причем способ включает этапы:
возбуждение единичных молекул (5) вещества светом возбуждения (23) для испускания света (27) флуоресценции, причем распределение интенсивности света возбуждения (23) имеет по меньшей мере один локальный минимум (6), и
регистрация света (27) флуоресценции возбужденных единичных молекул (5) вещества в разных позициях (xN) по меньшей мере одного минимума (6) в интересующей области (1) образца (2),
минимальное значение расстояний между единичными молекулами вещества (5) в интересующей области (1) образца (2) равно
, где
λ - длина волны света возбуждения,
N - показатель преломления оптического материала, в котором образуется по меньшей мере один минимум,
α - половинный угол раствора оптической системы, которая направляет свет возбуждения на образец,
I - максимальная интенсивность света возбуждения (23) в образце (2), и
Is - зависящая от вещества интенсивность света возбуждения при насыщении флуоресценции,
максимальная интенсивность света (27) флуоресценции единичной молекулы (5) в месте локального минимума (6) распределения интенсивности света возбуждения (23) составляет половину значения в местоположении максимальной интенсивности света возбуждения (23) в образце (2),
расстояния (7) между ближайшими соседними позициями (xN) по меньшей мере одного минимума (6), в которых регистрируют свет (27) флуоресценции возбужденных единичных молекул (5) вещества, составляют не больше половины минимального значения d, и
местоположения (xM) единичных молекул (5) вещества выводят из кривой зависимости интенсивности (I) света (27) флуоресценции соответствующей молекулы (5) от позиций (xN) по меньшей мере одного минимума (6) в интересующей области (1) образца (2).
2. Способ по п. 1, отличающийся тем, что кривую зависимости интенсивности (I) света (27) флуоресценции соответствующей молекулы (5) от позиций (xN) по меньшей мере одного минимума (6) аппроксимируют функцией (9) с локальный минимумом, и местоположение (xM) соответствующей молекулы (5) приравнивают к позиции локального минимума аппроксимированной функции (9).
3. Способ по п. 2, отличающийся тем, что функция (9) является квадратичной функцией.
4. Способ по п. 1, отличающийся тем, что местоположение (xM) соответствующей молекулы (5) приравнивают к позиции (xN) по меньшей мере одного минимума (6), которая характеризуется тем, что от соответствующей молекулы (5) регистрируют меньше света (27) флуоресценции, чем в ближайших в различных направлениях соседних позициях (xN) минимума (6).
5. Способ по одному из предыдущих пунктов, отличающийся тем, что расстояние (7) между ближайшими соседними позициями (xN) по меньшей мере одного минимума (6), в которых регистрируют свет (27) флуоресценции единичных возбужденных молекул (5) вещества, не больше размера слабовозбужденной зоны (32) вокруг минимума (6), в которой соответствующую молекулу (5) возбуждают для испускания света (27) флуоресценции только минимальной интенсивности.
6. Способ по одному из предыдущих пунктов, отличающийсятем, что интенсивность света возбуждения (23) вблизи по меньшей мере одного минимума (6) устанавливают настолько высокой, чтобы достичь насыщения по интенсивности (I) света (27) флуоресценции, который испускают единичные молекулы (5), возбужденные светом возбуждения (23).
7. Способ по одному из предыдущих пунктов, отличающийся тем,
что молекулы (4) вещества сигналом настройки с вероятностью перехода, повышающейся с интенсивностью сигнала настройки, можно переводить
из своего флуоресцентного состояния в нефлуоресцентное состояние или
из нефлуоресцентного состояния в их флуоресцентное состояние,
что при рассмотрении всех молекул (4) независимо от их состояния расстояния между ближайшими соседними молекулами (4) вещества в интересующей области (1) образца (2) меньше, чем минимальное значение d, и
что расстояния между единичными молекулами (5) вещества во флуоресцентном состоянии регулируют сигналом настройки.
8. Способ по п. 7, отличающийся тем,
что молекулы (4) вещества против направления их перевода сигналом настройки под действием сигнала обратной связи и/или спонтанно возвращают в их первоначальное состояние с другой вероятностью перехода,
что неоднократно или непрерывно для соответствующих других единичных молекул (5) во флуоресцентном состоянии устанавливают расстояния между ними с минимальным значением d сигналом настройки и при необходимости сигналом обратной связи,
что определяют соответствующие позиции единичных молекул (5) во флуоресцентном состоянии, чтобы получить картину распределения молекул (4) вещества в образце (2).
9. Способ по п. 8, отличающийся тем, что образец (2) непрерывно или прерывисто нагружают сигналом настройки и при необходимости сигналом обратной связи.
10. Способ по одному из пп. 7-9, отличающийся тем, что сигнал настройки является светом настройки.
11. Способ по п. 10, отличающийся тем, что молекулы (4) вещества переводят светом настройки из их флуоресцентного состояния в их нефлуоресцентное состояние.
12. Способ по п. 11, отличающийся тем, что нефлуоресцентное состояние молекулы (4) вещества является электронным состоянием энергии.
13. Способ по п. 11 или 12, отличающийся тем, что свет настройки имеет такую же длину волны, что и свет возбуждения (23).
14. Способ по одному из предыдущих пунктов, отличающийся тем, что по меньшей мере один минимум (6) является точечным минимумом, позицию которого в интересующей области (1) образца (2) изменяют во всех направлениях протяженности образца (2), и местоположения (xM) единичных молекул (5) вещества выводят во всех направлениях протяженности образца (2) из кривой зависимости интенсивности (I) света (27) флуоресценции соответствующей молекулы (5) от позиций (xN) по меньшей мере одного минимума (6) в интересующей области (1) образца (2).
15. Способ по п. 14, отличающийся тем, что свет (27) флуоресценции регистрируют в области регистрации, окружающей по меньшей мере один минимум (6), с помощью точечного детектора (30), расположенного конфокально минимуму (6).
16. Способ по одному из пп. 1-13, отличающийся тем, что по меньшей мере один минимум (6) проходит вдоль линии или плоскости, его позицию (xN) в интересующей области (1) образца (2) в направлении сканирования (14, 15) изменяют поперек линии или плоскости, и местоположения (xM) единичных молекул (5) вещества в направлении сканирования (14, 15) выводят из кривой зависимости интенсивности (I) света (27) флуоресценции соответствующей молекулы (5) от позиций (xN) по меньшей мере одного минимума (6) в интересующей области (1) образца (2).
17. Способ по п. 16, отличающийся тем, что линию или плоскость по-разному ориентируют относительно образца (2), чтобы определять местоположения (xM) единичных молекул (5) вещества в разных пространственных направлениях.
18. Способ по одному из предыдущих пунктов, отличающийся тем, что распределение интенсивности света возбуждения имеет несколько минимумов (6), позиции которых в интересующей области (1) образца (2) изменяют совместно, причем свет (27) флуоресценции возбужденных единичных молекул (5) вещества регистрируют отдельно для каждого минимума (6).
19. Способ по одному из предыдущих пунктов, отличающийся тем, что свет (27) флуоресценции регистрируют матрицей (29) датчиков света, находящейся в состоянии покоя относительно образца (2).
20. Способ по п. 19, отличающийся тем, что из матрицы (29) датчиков света непрерывно считывают кадры и ставят в соответствие соответствующим позициям по меньшей мере одного минимума (6) в образце (2).
21. Способ по п. 20, отличающийся тем, что по меньшей мере один минимум (6) непрерывно смещают в образце (2).
22. Способ по одному из п.п. 19-21, отличающийся тем, что расстояния между единичными молекулами (5) вещества в интересующей области (1) образца (2) больше, чем дифракционный предел на длине волны света (27) флуоресценции, и местоположения (xM) единичных молекул (5) вещества во флуоресцентном состоянии дополнительно определяют из распределения (13) суммарного света (∑Ι) флуоресценции соответствующей молекулы (5), регистрируемого матрицей (29) датчиков света.
23. Устройство для осуществления способа по одному из предыдущих пунктов, содержащее
источник (22) света возбуждения, выдающий свет возбуждения (23), посредством которого
молекулы (4) вещества, находящиеся во флуоресцентном состоянии, могут быть возбуждены для испускания света флуоресценции, и
молекулы (4) вещества могут быть переведены из флуоресцентного состояния в нефлуоресцентное, темное состояние,
оптическую систему, которая направляет свет возбуждения с распределением интенсивности на образец (2), и
детекторное устройство, которое регистрирует свет (27) флуоресценции, испущенный молекулами (5) вещества, возбужденными светом возбуждения, во флуоресцентном состоянии, отличающееся тем,
что светоформирующая оптика (24) формирует распределение интенсивности света возбуждения (23) в образце (2), которое имеет по меньшей мере один локальный минимум (6), причем максимальная интенсивность света (27) флуоресценции единичной молекулы (5) в месте локального минимума (6) распределения интенсивности света возбуждения (23) составляет не больше половины значения в месте максимальной интенсивности света возбуждения (23) в образце (2),
что предусмотрено сканирующее устройство (26), с помощью которого по меньшей мере один минимум (6) можно позиционировать в разных позициях (xN) в образце (2),
что детекторное устройство, которое регистрирует свет (27) флуоресценции, испускаемый из зоны регистрации, окружающей по меньшей мере один минимум, отдельно от света флуоресценции, испускаемого из других зон образца (2),
что расстояния (7) между ближайшими позициями (x
N) по меньшей мере одного минимума (6), в которых детекторное устройство регистрирует свет (27) флуоресценции из зоны регистрации, составляет не больше
), где
λ - длина волны света возбуждения,
n - показатель преломления оптического материала, в котором образуется по меньшей мере один минимум,
α - половинный угол раствора оптической системы, которая направляет свет возбуждения на образец,
I - максимальная интенсивность света возбуждения (23) в образце (2), и
Is - зависящая от вещества интенсивность света возбуждения при насыщении флуоресценции.
24. Устройство по п. 23, отличающееся тем, что светоформирующая оптика (24) формирует распределение интенсивности света возбуждения (23) в образце с решеткой минимумов (6), и сканирующее устройство (26) таким образом смещает распределение интенсивности относительно образца (2), чтобы интересующая область (1) образца (2) полностью сканировалась слабовозбужденными зонами (32) вокруг нулевой точки (6), в пределах которых молекулы (4) вещества во флуоресцентном состоянии возбуждают только для испускания света (27) флуоресценции минимальной интенсивности.
25. Устройство по п. 23 или 24, отличающееся тем, что детекторное устройство содержит матрицу (29) датчиков изображений, находящуюся в состоянии покоя относительно образца.