Код документа: RU2629032C2
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к диспергатору гипса, который добавляют при изготовлении широкого спектра формованных продуктов из гипса, таких как гипсовые панели (гипсокартонные листы), в целях улучшения текучести гипсовой суспензии, образованной из гипса и воды.
УРОВЕНЬ ТЕХНИКИ
Гипсовые панели широко использовали в основном в качестве материалов внутренней отделки зданий вследствие их превосходных характеристик огнестойкости, звукоизоляции и теплоизоляции, а также их доступности при низких ценах. Гипсовые панели в общем случае изготавливают по способу отливки. В данном способе гипсовую суспензию, которая образована из обожженного гипса, воды, диспергатора и других добавок (добавки), смешивают и замешивают в смесительной установке с пеноматериалом; смесь заливают между листами из бумаги основы, получая сэндвичевую структуру; и регулируют толщину и ширину, а после этого проводят отверждение, резку и высушивание для получения гипсовой панели. Доступными являются различные типы гипсовых панелей, такие как обычные панели, твердые панели, армированные панели и декоративные панели. Несмотря на возможность изменения типов добавок, продолжительностей перемешивания, добавления армированных материалов и тому подобного в зависимости от характеристик, требуемых для каждой из панелей, панели могут быть изготовлены по идентичному способу.
При изготовлении гипсовой суспензии для улучшения пластичности гипсовой панели по отношению к бумаге основы, а также для уменьшения удельного расхода воды при изготовлении суспензии, что улучшает эффективность высушивания суспензии, и для увеличения плотности формованной панели в целях получения высокопрочной панели используют диспергатор.
Обычно и широко использовали в качестве диспергаторов для гипса соединения на формальдегидной основе, такие как нафталинсульфонат-формальдегидный конденсат, меламинсульфонат-формальдегидный конденсат и формальдегидный конденсат бисфенола и аминобензолсульфоновой кислоты (смотрите патентные документы 1 и 2).
В патентном документе 3 описывается самовыравнивающаяся водная гипсовая композиция, характеризующаяся высоким уровнем текучести и превосходной способностью самовыравнивания, которую получают в результате добавления к водной гипсовой композиции поликарбокислотного диспергатора.
В патентном документе 4 описывается гипсовый диспергатор, характеризующийся включением растворимого в воде амфотерного полимерного соединения в качестве основного компонента. Растворимое в воде амфотерное полимерное соединение содержит структурное звено, содержащее атом азота, выбираемое из амидогруппы, аминогруппы и иминогруппы; структурное звено, содержащее карбокислотную группу; и структурное звено, содержащее полиалкиленгликолевую группу, и соединение получают в результате полимеризации. Однако вследствие примесей, содержащихся в материалах исходного сырья для гипса, эффекты диспергатора не могут быть проявлены устойчиво, и, таким образом, требуется улучшение.
Документы предшествующего уровня техники
Патентные документы
Патентный документ 1: японский патент №3067811 (JP 3067811 B2).
Патентный документ 2: японский патент №3733821 (JP 3733821 B2).
Патентный документ 3: публикация японской рассмотренной патентной заявки № S64-1426 (JP S64-1426 B).
Патентный документ 4: публикация японской патентной заявки №2007-320786 (JP 2007-320786 A).
КРАТКОЕ ИЗЛОЖЕНИЕ ИЗОБРЕТЕНИЯ
Проблема, разрешаемая в изобретении
Несмотря на демонстрацию вышеупомянутыми обычными поликарбокислотными диспергаторами превосходной диспергируемости для гипсовой суспензии в результате надлежащего выбора условий использования, таких как значение рН, это также вызывает задержку отверждения, что в результате приводит к уменьшению производительности по гипсовым панелям.
Существует широкий спектр материалов исходного сырья для гипса, таких как импортированный природный гипс, гипс, получаемый в результате десульфуризации дымовых газов, извлекаемый из установок десульфуризации, использующихся на электрических станциях или металлургических предприятиях, гипс в качестве побочного продукта, такой как фосфорнокислотный гипс и фторогипс, и утилизированный гипс, отделяемый и извлекаемый из отходов гипсовых панелей. Их различным образом используют при переходе от предприятия к предприятию в целях уменьшения транспортных расходов и тому подобного. В соответствии с этим, примеси и тому подобное, что содержится в гипсе, при переходе от предприятия к предприятию различаются, и, таким образом, свойства добавки, уменьшающей содержание воды в гипсе, не могут быть проявлены в полной мере.
С учетом описанных выше недостатков, таких как проблема, разрешаемая в настоящем изобретении, настоящее изобретение предлагает диспергатор гипса и добавку для гипса, которые улучшают текучесть гипсовой суспензии даже в случае различия по качеству использующихся материалов исходного сырья для гипса, и которые не вызывают задержки отверждения гипсовой суспензии.
Средства разрешения проблемы
В результате проведения интенсивного исследования для разрешения вышеупомянутой проблемы авторы настоящего изобретения сделали настоящее изобретение.
Говоря конкретно, настоящее изобретение относится к диспергатору гипса, характеризующемуся содержанием: (А) поликарбокислотного полимера; и (В) полимера, полученного в результате проведения реакции между алкилендиамином и/или моноамином и эпигалогенгидрином в качестве существенных компонентов.
Настоящее изобретение также относится к добавке для гипса, содержащей: полимер, полученный в результате проведения реакции между алкилендиамином и/или моноамином и эпигалогенгидрином в качестве существенных компонентов, которую примешивают для улучшения текучести гипсовой суспензии.
Эффекты от изобретения
В диспергаторе гипса настоящего изобретения используют (А) поликарбокислотный полимер в комбинации с (В) продуктом реакции между алкилендиамином и эпигалогенгидрином. Вследствие этого даже в случае различия по качеству использующихся материалов исходного сырья для гипса достаточная текучесть может быть устойчиво придана вне зависимости от типов.
Кроме того, в результате добавления диспергатора гипса к гипсовой суспензии гипсовые панели могут быть изготовлены без уменьшения производительности.
СПОСОБЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Ниже в настоящем документе настоящее изобретение будет разъясняться подробно.
В качестве (А) поликарбокислотного полимера предпочтительно может быть использован полимер, содержащий структурное звено, произведенное из (а) полиалкиленгликолевого ненасыщенного мономера, и структурное звено, произведенное из (b) ненасыщенного карбокислотного мономера.
Структурное звено, произведенное из (а) полиалкиленгликолевого ненасыщенного мономера, может быть описано общей формулой (2):
(где каждый из R6, R7, R8 и R9 независимо представляет собой атом водорода или С1-22 углеводородную группу, Х представляет собой -СОО- или -(СН2)aO-, a представляет собой целое число в диапазоне от 1 до 20, АО представляет собой С2-4 алкиленоксигруппу, а n представляет собой количество молей добавленных алкиленоксигрупп и находится в диапазоне от 1 до 200).
В формуле (2) каждый из R6, R7, R8 и R9 независимо представляет собой атом водорода или С1-22 углеводородную группу, предпочтительно атом водорода или С1-8 алкильную группу, а более предпочтительно атом водорода, метильную группу, этильную группу, пропильную группу или бутильную группу.
АО представляет собой С2-4 алкиленоксигруппу, и ее конкретные примеры включают этиленоксигруппу, пропиленоксигруппу и бутиленоксигруппу. В случае образования АО из двух и более типов алкиленоксигрупп данные алкиленоксигруппы могут являться любым представителем, выбираемым из продуктов блочного присоединения или статистического присоединения.
n представляет собой количество молей присоединенных алкиленоксигрупп и находится в диапазоне от 1 до 200, предпочтительно от 5 до 120, более предпочтительно от 10 до 100, а еще более предпочтительно от 40 до 100.
Далее следуют конкретные примеры (а) полиалкиленгликолевого ненасыщенного мономера.
Алкоксиполиалкиленгликольмоно(мет)акрилаты, такие как метоксиполиэтиленгликольмоно(мет)акрилат, метокси{полиэтиленгликоль(поли)пропиленгликоль}моно(мет)акрилат, этоксиполиэтиленгликольмоно(мет)акрилат, этокси{полиэтиленгликоль(поли)пропиленгликоль}моно(мет)акрилат, пропоксиполиэтиленгликольмоно(мет)акрилат, пропокси{полиэтиленгликоль(поли)пропиленгликоль}моно(мет)акрилат, бутоксиполиэтиленгликольмоно(мет)акрилат и бутокси{полиэтиленгликоль(поли)пропиленгликоль}моно(мет)акрилат; и полиалкиленгликолевые аддукты ненасыщенных спиртов, такие как алкиленоксидный аддукт винилового спирта, алкиленоксидный аддукт (мет)аллилового спирта, алкиленоксидный аддукт 3-бутен-1-ола, алкиленоксидный аддукт изопренового спирта (3-метил-3-бутен-1-ола), алкиленоксидный аддукт 3-метил-2-бутен-1-ола, алкиленоксидный аддукт 2-метил-3-бутен-2-ола, алкиленоксидный аддукт 2-метил-2-бутен-1-ола и алкиленоксидный аддукт 2-метил-3-бутен-1-ола. Следует обратить внимание на то, что в настоящем изобретении (мет)акрилат относится как к акрилату, так и метакрилату, а (мет)аллиловый спирт относится как к аллиловому спирту, так и металлиловому спирту.
Конкретные примеры (b) ненасыщенного карбокислотного мономера включают акриловую кислоту, метакриловую кислоту, малеиновую кислоту, фумаровую кислоту, итаконовую кислоту и ненасыщенную жирную кислоту, а также ангидриды данных кислот, такие как малеиновый ангидрид. В их числе в особенности предпочтительной является метакриловая кислота.
В (А) поликарбокислотном полимере примеры (с) сополимеризуемого мономера, отличного от вышеупомянутых мономеров (а) и (b), включают следующие далее известные мономеры; (1) (не)водные мономеры: метил(мет)акрилат, этил(мет)акрилат, бутил(мет)акрилат, стирол и тому подобное; (2) анионные мономеры: винилсульфонаты, стиролсульфонаты, сложные фосфоэфиры метакриловой кислоты и тому подобное; (3) амидные мономеры: акриламид, алкиленоксидный аддукт акриламида и тому подобное; (4) полиамидполиаминовые мономеры: соединение конденсата полиамидполиамина и (мет)акриловой кислоты, которое при желании содержит алкиленоксид.
Соотношение между мономерами от (а) до (с) при сополимеризации предпочтительно составляет (а):(b):(c) = от 50 до 95 : от 5 до 50 : от 0 до 40, а более предпочтительно (а):(b):(c) = от 70 до 90 : от 10 до 30 : от 0 до 20, в расчете на массу.
На способ изготовления (А) поликарбокислотного полимера каких-либо конкретных ограничений не накладывают, и могут быть использованы известные способы полимеризации, такие как растворная полимеризация и блочная полимеризация, которые используют инициаторы полимеризации. Несмотря на отсутствие также и каких-либо конкретных ограничений, накладываемых на молекулярную массу, для достижения хорошей диспергируемости она предпочтительно находится в диапазоне от 5000 до 100000 при выражении в виде среднемассовой молекулярной массы (согласно определению по методу гельпроникающей хроматографии, в пересчете на полиэтиленгликоль).
Предпочтительно (А) поликарбокислотный полимер содержится в диспергаторе гипса настоящего изобретения в частично или полностью нейтрализованной форме, которую нейтрализовали при использовании нейтрализатора, такого как гидроксид лития, гидроксид калия, гидроксид натрия, аммиак, алкиламин или органический амин.
Далее будет разъясняться (В) полимер, полученный в результате проведения реакции между алкилендиамином и/или моноамином и эпигалогенгидрином в качестве существенных компонентов.
В качестве описанного выше алкилендиамина предпочтительно используют алкилендиамин, описывающийся общей формулой (1):
(где каждый из R1 и R2 представляет собой С1-5 алкильную группу или С1-4 гидроксиалкильную группу; каждый из R3 и R4 представляет собой атом водорода, или С1-5 алкильную группу, или С1-4 гидроксиалкильную группу; и R5 представляет собой С2-6 алкиленовую группу).
Конкретные примеры алкилендиамина включают диметиламиноэтиламин, диэтиламиноэтиламин, диметиламинопропиламин, диэтиламинопропиламин, 3-метиламинопропиламин, N,N,N',N'-тетраметилэтилендиамин, N,N,N',N'-тетраэтилэтилендиамин, N,N,N',N'-тетраметилпропилендиамин, N,N,N',N'-тетраэтилпропилендиамин, N,N,N',N'-тетрагидроксиэтилэтилендиамин, N,N-диметил-N',N'-дигидроксиэтилпропилендиамин, диэтиламино-4-аминопентан, тетраметилгексаметилендиамин, тетраметил-1,3-бутандиамин и тетраметилфенилендиамин. В их числе предпочтительными являются диметиламинопропиламин и диэтиламинопропиламин.
Конкретные примеры описанного выше моноамина включают моноамины, содержащие алкильные группы, такие как метиламин, диметиламин, этиламин, диэтиламин, н-пропиламин, ди-н-пропиламин, изопропиламин, диизопропиламин, н-бутиламин, ди-н-бутиламин, втор-бутиламин, ди-втор-бутиламин, трет-бутиламин, ди-трет-бутиламин, гексиламин, дигексиламин, циклогексиламин, дициклогексиламин, 2-этилгексиламин и ди(2-этилгексил)амин; моноамины, содержащие алкенильные группы, такие как аллиламины и диаллиламины; моноамины, содержащие гидроксиалкильные группы, такие как моноэтаноламин, диэтаноламин, гидроксипропиламин, дигидроксипропиламин, N-метилэтаноламин и аминобензойная кислота; моноамины, содержащие фенильные группы, такие как анилин и дифениламин; моноамины, содержащие бензильные группы, такие как бензиламин и дибензиламин; и аммиак.
Либо из алкилендиаминов, либо из моноаминов могут быть выбраны один или два или несколько компонентов, или они могут быть выбраны как из алкилендиаминов, так и из моноаминов и использованы в комбинации.
Примеры эпигалогенгидрина включают эпихлоргидрин, эпибромгидрин и метилэпихлоргидрин; и они могут быть использованы индивидуально, или два и более из них могут быть использованы в комбинации. В числе данных эпигалогенгидринов наиболее предпочтительным является эпихлоргидрин.
Молярное соотношение в реакции между алкилендиамином и/или моноамином и эпигалогенгидрином предпочтительно находится в диапазоне от 2:1 до 1:2. В случае проведения реакции при молярном соотношении в данном диапазоне полученный полимер будет иметь молекулярную массу, характеризующуюся подходящей для использования вязкостью, и, таким образом, может быть получена хорошая диспергируемость. Среднемассовая молекулярная масса полимера обычно находится в диапазоне от 1000 до 1000000, предпочтительно от 2000 до 500000, а более предпочтительно от 3000 до 100000.
Хотя отсутствуют какие-либо конкретные ограничения, накладываемые на соотношение между компонентом (А) и компонентом (В), предпочтительно (А):(В) = от 1:1 до 30:1, а более предпочтительно от 2:1 до 20:1, в пересчете на массовое соотношение.
Несмотря на неизвестность механизма того, каким образом гипсовой суспензии, в которой используется диспергатор гипса по настоящему изобретению, постоянно придается текучесть, предположительно компонент (В) селективно адсорбируется на примесях, которые присутствуют в материалах исходного сырья для гипса и ингибирует функцию диспергатора. В соответствии с этим, компонент (В) может быть использован в качестве добавки для гипса совместно с диспергатором, отличным от компонента (А), таким как лигносульфонат, высококонденсированная соль нафталинсульфоновой кислоты и формалина, высококонденсированная соль меламинсульфоновой кислоты и формалина, полистиролсульфонат и водный винильный сополимер.
К материалам исходного сырья для гипса при использовании обычно может быть добавлено от 0,01% (масс.) до 5% (масс.) (массовая доля диспергатора в твердом веществе) диспергатора гипса настоящего изобретения. Несмотря на использование для добавления диспергатора широкого спектра способов в общем случае диспергатор добавляют в воду для первоначального разбавления, а после этого гипс замешивают с водой для получения гипсовой суспензии. Компонент (А) и компонент (В) могут быть перемешаны перед добавлением, или каждый из них может быть добавлен индивидуально без перемешивания. В случае индивидуального добавления каждого из них может быть использован любой порядок добавления.
Гипс включает безводный гипс, полуводный гипс и двуводный гипс. В качестве материалов исходного сырья для гипса природный гипс или химический гипс, такой как нейтрализованный гипс и гипс в качестве побочного продукта, могут быть использованы индивидуально, или два и более из них могут быть использованы при перемешивании. Основные примеры химического гипса включают фосфорнокислотный гипс, фторогипс, титановый гипс и гипс, получаемый в результате десульфуризации дымовых газов. Материалы исходного сырья для гипса могут содержать утилизированный гипс. Утилизированный гипс может быть утилизированным гипсом, собираемым из отходов гипсовых панелей, генерированных у производителей гипсовых панелей, или утилизированным гипсом, собираемым из отходов гипсовых панелей и тому подобного, генерированных при строительстве или отбраковывании. Диспергатор гипса настоящего изобретения подходящим для использования образом может быть применен для любого из таких материалов исходного сырья для гипса и демонстрирует превосходные эффекты даже для гипса, перемешанного при различных соотношениях между компонентами смеси.
Примеры добавки, которую используют для гипсовых панелей и тому подобного в дополнение к диспергатору гипса настоящего изобретения, включают универсальную добавку, уменьшающую содержание воды, пенообразователь, такой как алкилсульфат, алкилэфирсульфат на основе простого эфира и алкилсульфонат, противовспениватель, стабилизатор пены, регулятор отверждения, водоотталкивающую добавку, клеящую добавку и замедлитель. В дополнение к этому, в качестве армирующего волокна могут быть добавлены стекловолокно, углеродное волокно, бумажная макулатура, древесная волокнистая масса первичного помола и тому подобное, или гипсовые панели могут быть получены при использовании легкого заполнителя, такого как перлит и пенистая сталь.
Диспергатор настоящего изобретения легко может быть нанесен на гипсовую штукатурку, которую используют в отделочном покрытии.
Примеры
Настоящее изобретение будет разъясняться в соответствии с конкретными примерами; однако, настоящее изобретение данными примерами не ограничивается. Если только не будет указано другого, то соотношения между мономерами при сополимеризации и соотношения между компонентами смеси получают в расчете на массу.
[(А) Поликарбокислотный полимер]
Ниже будет разъясняться (А) поликарбокислотный полимер, использующийся в примерах настоящего документа.
[(B) Изготовление полимера из амина и эпигалогенгидрина]
Продукты реакции между алкилендиамином и/или моноамином и эпигалогенгидрином, использующиеся в примерах в настоящем документе (от В1 до В11), изготавливали в соответствии с методикой, описанной ниже.
<Условие измерения молекулярной массы>
Колонка: OHpacSB-806MHQ, OHpacSB-804HQ, OHpacSB-803HQ (производство компании Showa Denko K. K.)
Элюент: уксусная кислота при 0,5 моль/л и водный раствор нитрата натрия
Детектор: дифференциальный рефрактометр
Градуировочная кривая: на основании пуллулана
Пример синтеза 1
В четырехгорлой колбе размещали и в достаточной степени перемешивали 116 г (1 моль) N,N,N',N'-тетраметилэтилендиамина и 171 г воды. После этого сюда же при температуре, составляющей 40°С и менее, постепенно добавляли 94 г (0,9 моля) 35%-ной хлористоводородной кислоты для получения гидрохлорида амина. После этого смесь нагревали для увеличения температуры до 70°С и сюда же в течение приблизительно двух часов покапельно добавляли 83,3 г (0,9 моля) эпихлоргидрина. Во время покапельного добавления температуру выдерживали в диапазоне от 70°С до 80°С. По завершении покапельного добавления эпихлоргидрина реакцию продолжали в течение шести часов при той же самой температуре для получения водного раствора полимера В1 при 50% (масс.). Среднемассовая молекулярная масса полученного полимера составляла 223000.
Пример синтеза 2
190 г (1 моль) N,N-диметил-N',N'-дигидроксиэтилпропилендиамина и 88 г (0,95 моля) эпихлоргидрина вводили в реакцию тем же самым образом, как и в случае примера синтеза 1, для получения водного раствора полимера В2 при 50% (масс.). Среднемассовая молекулярная масса полученного полимера составляла 125000.
Пример синтеза 3
236 г (1 моль) N,N,N',N'-тетрагидроксиэтилэтилендиамина и 92,5 (1 моль) эпихлоргидрина вводили в реакцию тем же самым образом, как и в случае примера синтеза 1, для получения водного раствора полимера В3 при 50% (масс.). Среднемассовая молекулярная масса полученного полимера составляла 573000.
Пример синтеза 4
236 г (1 моль) N,N,N',N'-тетрагидроксиэтилэтилендиамина и 50,9 (0,55 моля) эпихлоргидрина вводили в реакцию тем же самым образом, как и в случае примера синтеза 1, для получения водного раствора полимера В4 при 50% (масс.). Среднемассовая молекулярная масса полученного полимера составляла 63000.
Пример синтеза 5
В четырехгорлой колбе размещали и в достаточной степени перемешивали 116 г (1 моль) диэтиламиноэтиламина и 196 г воды. Сюда же в течение приблизительно двух часов покапельно добавляли 88 г (0,95 моля) эпихлоргидрина при выдерживании температуры в диапазоне от 40°С до 50°С. По завершении покапельного добавления реакцию продолжали в течение одного часа при той же самой температуре и, кроме того, продолжали в течение восьми часов при температуре в диапазоне от 70°С до 80°С для получения водного раствора полимера В5 при 50% (масс.). Среднемассовая молекулярная масса полученного полимера составляла 21000.
Пример синтеза 6
102 г (1 моль) диметиламинопропиламина и 92,5 г (1 моль) эпихлоргидрина вводили в реакцию тем же самым образом, как и в случае примера синтеза 5, для получения водного раствора полимера В6 при 50% (масс.). Среднемассовая молекулярная масса полученного полимера составляла 35000.
Пример синтеза 7
102 г (1 моль) диметиламинопропиламина и 55,5 г (0,6 моля) эпихлоргидрина вводили в реакцию тем же самым образом, как и в случае примера синтеза 5, для получения водного раствора полимера В7 при 50% (масс.). Среднемассовая молекулярная масса полученного полимера составляла 5300.
Пример синтеза 8
45,1 г (1 моль) диметиламина и 92,5 г (1 моль) эпихлоргидрина вводили в реакцию тем же самым образом, как и в случае примера синтеза 5, для получения водного раствора полимера В8 при 50% (масс.). Среднемассовая молекулярная масса полученного полимера составляла 620000.
Пример синтеза 9
45,1 г (1 моль) диметиламина и 46,3 г (0,5 моля) эпихлоргидрина вводили в реакцию тем же самым образом, как и в случае примера синтеза 5, для получения водного раствора полимера В9 при 50% (масс.). Среднемассовая молекулярная масса полученного полимера составляла 6600.
Пример синтеза 10
22,6 г (0,5 моля) диметиламина, 51 г (0,5 моля) диметиламинопропиламина и 92,5 г (1 моль) эпихлоргидрина вводили в реакцию тем же самым образом, как и в случае примера синтеза 5, для получения водного раствора полимера В10 при 50% (масс.). Среднемассовая молекулярная масса полученного полимера составляла 960000.
Пример синтеза 11
22,6 г (0,5 моля) диметиламина, 51 г (0,5 моля) диметиламинопропиламина и 46,3 г (0,5 моля) эпихлоргидрина вводили в реакцию тем же самым образом, как и в случае примера синтеза 5, для получения водного раствора полимера В11 при 50% (масс.). Среднемассовая молекулярная масса полученного полимера составляла 9000.
Композиции материалов исходного сырья для гипса, использующихся в эксплуатационном испытании, продемонстрированы в таблице 1.
Диспергаторы гипса из примеров от 1 до 51 и сравнительных примеров от 1 до 3 получали при композиционных соотношениях, продемонстрированных в таблице 2, и по методу, описанному ниже, проводили испытания на диспергируемость гипса и задержку отверждения гипса.
В качестве обожженного гипса №6 использовали коммерчески доступный обожженный гипс Cherry Mark марки А, изготовленный в компании YOSHINO GYPSUM Co., Ltd.
[Эксплуатационное испытание]
<Диспергируемость гипса>
Компонент (А) и компонент (В) перемешивали при каждом из соотношений между компонентами смеси (массовых соотношений), продемонстрированных в таблице 2 (таблицах 2-1 и 2-2), для получения диспергаторов гипса из примеров от 1 до 51 и сравнительных примеров от 1 до 3 следующим образом: 0,18 г каждого из диспергаторов взвешивали на основании уровня содержания в твердом веществе (по гипсу, 0,06% (масс.)) и сюда же добавляли воду в виде воды замешивания в целях доведения совокупного количества до 195 г. К смеси добавляли 300 г обожженного гипса, характеризующегося составом при перемешивании, продемонстрированным в таблице 1, или коммерчески доступного обожженного гипса (№6) (65% для соотношения вода/гипс) и получающуюся в результате смесь замешивали в небольшом давильном прессе/смесителе в течение 10 секунд.
В центре уретановой панели (35 см × 35 см) предварительно получали пустотелый цилиндр, имеющий верхний внутренний диаметр 75 мм, нижний внутренний диаметр 85 мм и высоту 40 мм, и замешанную гипсовую суспензию немедленно выливали в контейнер (пустотелый цилиндр) вплоть до заполнения контейнера. После этого пустотелый цилиндр вытягивали в направлении, перпендикулярном уретановой панели, и измеряли растекание гипсовой суспензии. Измеряли первый диаметр, который может представлять собой максимальное растекание, и второй диаметр, перпендикулярный первому диаметру, и оценивали их среднее значение в качестве показателя диспергируемости.
Полученные результаты (средние значения диаметров) продемонстрированы в таблице 2 (таблицах 2-1 и 2-2).
[Задержка отверждения гипса]
Подобно испытанию на диспергируемость тщательно отвешивали 0,18 г каждого из диспергаторов гипса из примеров от 1 до 51 и сравнительных примеров от 1 до 3 на основании уровня содержания в твердом веществе (по гипсу, 0,06% (масс.)) и сюда же добавляли воду замешивания в целях доведения совокупного количества до 195 г. К смеси добавляли 300 г обожженного гипса, характеризующегося составом при перемешивании, продемонстрированным в таблице 1, или коммерчески доступного обожженного гипса (№6) (65% для соотношения вода/гипс) и получающуюся в результате смесь замешивали в небольшом давильном прессе/смесителе в течение 10 секунд.
После замешивания полученную гипсовую суспензию немедленно переводили в бумажный стаканчик и сюда же помещали цифровой термометр в целях измерения каждые десять минут температуры в соответствии с тепловыделением, представляющим собой результат отверждения гипса. Время, затрачиваемое для достижения максимальной температуры, определяли как время пиковой температуры, и его использовали в качестве показателя для оценки задержки отверждения.
Полученные результаты (время для пиковых температур) продемонстрированы в таблице 2 (таблицах 2-1 и 2-2).
Как это продемонстрировано в таблице 2 (таблицах 2-1 и 2-2), гипсовая суспензия, в которую добавляли каждый из диспергаторов гипса из примеров от 1 до 51, продемонстрировала превосходную диспергируемость и уменьшенную задержку отверждения даже в случае различия использующихся материалов исходного сырья для гипса по качеству.
С другой стороны, несмотря на демонстрацию некоторыми из диспергаторов гипса из сравнительных примеров от 1 до 3, которые не содержат конденсата амина и эпигалогенгидрина, результатов, сопоставимых с результатами для примеров в случае использования коммерчески доступного обожженного гипса №6, как диспергируемость, так и задержка отверждения были худшими в сопоставлении с тем, что имело место для примеров использования обожженного гипса от №1 до №5, что отражает фактическое смешивание гипса, проводимое на предприятиях по изготовлению гипсовых панелей.
Изобретение относится к диспергатору гипса, который добавляют при изготовлении широкого спектра формованных продуктов из гипса. Технический результат заключается в улучшении текучести гипсовой суспензии даже в случае использования материалов исходного сырья для гипса, варьирующихся по качеству, и которые не задерживают отверждения гипсовой суспензии. Диспергатор гипса содержит: (А) поликарбоксилатный полимер; (В) полимер, полученный в результате проведения реакции между алкилендиамином и эпигалогенгидрином в качестве существенных компонентов. 3 табл., 5 з. и 2 н.п. ф-лы.
Диспергаторы