Код документа: RU2105161C1
Настоящее изобретение касается управления подачей масла в двигатель с двухтактным циклом, при котором введение масла в двигатель осуществляют отдельно от введения топлива.
С ростом требований к уменьшению выделений двигателями внутреннего сгорания признали, что необходимо ввести управляющее устройство для управления уровнем выделений с выхлопными газами двигателей такого класса, которые относятся не к автомобильным двигателям, а, в частности, к судовым двигателям для прогулочных катеров и двигателей для мопедов и мотороллеров.
Рассматриваются также ограничения на выделения различными типами стационарных двигателей внутреннего сгорания и оборудования, в которых используются двигатели внутреннего сгорания и оборудования, а также двигатели внутреннего сгорания с малым рабочим объемом цилиндров, типа газонокосилок и кусторезов.
Большая часть этих маленьких двигателей работает на принципе двухтактного цикла. Причина состоит, главным образом, в том, что такие двигатели с двухтактным циклом имеют малый вес и низкую стоимость изготовления.
Однако в большинстве двухтактных двигателей в настоящее время используют смазывание двигателя путем введения смазочного масла в топливо, которое в этом случае проходит через отсек картера соответствующих цилиндров, прежде чем оно поступит в цилиндр, чтобы воспламениться и сгореть. Хотя смесь масла с топливом является очень удобным и сравнительно дешевым способом транспортирования смазочного масла в различные участки двигателя, она усугубляет проблему выделения с выхлопными газами.
Механическое устройство дозирования масла используют также в связи с двухтактными двигателями, обычно управляемыми от системы рычагов тяг управления дроссельной заслонкой для регулирования подачи масла в зависимости от нагрузки двигателя. Масло подают в топливо или непосредственно в двигатель, или в двигателе с двухтактным циклом с давлением в полости картера, в воздух, находящийся в картере двигателя.
Установлено, что более эффективное управление выделениями с выхлопными газами, особенно в двигателях с двухтактным циклом, достигают непосредственным спрыском топлива в камеру сгорания, однако в случае таких систем с непосредственным впрыском топливо нельзя использовать в качестве носителя для смазочного масла, поскольку топливо не вводится в картер двигателя, где располагаются основные детали, требующие эффективного смазывания.
В автомобилях, имеющих двигатели с большим рабочим объемом, с экономической точки зрения приемлемо обеспечивать систему управления работой двигателя, включающую электронный блок управления, который можно программировать для управления соответствующей системой смазки двигателя, дополнительно к управлению работой системы впрыска топлива.
Однако, стоимости таких систем управления двигателями слишком высокие, чтобы позволить использовать их в управлении работой двигателей малого рабочего объема с низкой стоимостью /типа маленьких судовых двигателей, двигателей мопедов и скутеров и двигателей для газонокосилок/.
Задача изобретения - создание способа и аппаратуры для раздельной /без смешения/ подачи топлива и смазки в ДВС с двухтактным циклом, которые эффективны и надежны и которые можно изготовить с большим рабочим объемом при относительно низкой стоимости.
Поставленная задача решается тем, что в способе управления подачей смазочного масла к ДВС с двухтактным циклом, при котором подают топливо в двигатель из топливного резервуара, причем циклически наполняют упомянутый резервуар количеством топлива, по крайней мере, равным требуемому количеству топлива для двигателя в течение множества циклов его работы при максимальной скорости потребления топлива двигателем, подают масло в двигатель принудительным средством объемного насоса, имеющим скорость подачи на цикл работы насоса больше максимального требуемого двигателем количества масла на цикл работы двигателя, приводят в действие упомянутый масляный насос и управляют подачей масла во время каждого цикла работы для поддержания по существу, постоянного заранее заданного соотношения между количеством топлива и количеством масла, подаваемых в двигатель за цикл работы двигателя, приводят в действие упомянутый масляный насос под действием топлива из упомянутого резервуара и одновременно с ним, причем упомянутый способ позволяет осуществлять раздельную подачу в двигатель топлива и масла.
Перемещают участок стенки, определяющий упомянутый топливный резервуар путем подачи топлива из упомянутого топливного резервуара, и приводят в действие насос под действием перемещения упомянутого участка стенки.
Прикладывают нагрузку к упомянутому участку стенки для поддержания, по существу, постоянного давления топлива в резервуаре. Пополняют упомянутый топливный резервуар под действием заранее заданной величины перемещения упомянутого участка стенки из положения, занимаемого, когда резервуар заполнен топливом.
Прикладывают нагрузку к упомянутому участку стенки от источника давления с текучей средой для оказания давления на топливо в резервуаре, понижают упомянутое давление текучей среды после перемещения участка стенки на заранее заданную величину, возвращают упомянутый участок стенки в первоначальное положение, наполняют резервуар и вновь прикладывают давление текучей среды.
Осуществляют всасывание топлива в резервуар для пополнения резервуара под действием упомянутого обратного перемещения участка стенки.
Подводят упомянутое давление текучей среды посредством выпуска сжатого газа из камеры или камер сгорания двигателя. Приводят в действие упомянутое средство насоса под действием перемещения упомянутого участка стенки резервуара.
Упомянутое средство насоса содержит элемент, выступающий в камеру с постоянным объемом, а упомянутое управление подачей масла осуществляют увеличением степени выступания упомянутого элемента в прямой зависимости от перемещения упомянутого участка стенки топливного резервуара и благодаря этому подают масло в двигатель.
К упомянутому участку стенки подсоединяют элемент, предназначенный для перемещения одновременно с ним и уменьшают выступание упомянутого элемента в камеру, когда участок стенки возвращается в первоначальное положение, благодаря чему осуществляют всасывание масла в упомянутую камеру для пополнения камеры маслом.
Поставленная задача решается также тем, что аппаратура дозирования масла для управления подводом масла к ДВС с двухтактным циклом работы, содержащая принудительное средство объемного насоса для подачи масла в двигатель и имеющего объем на цикл насоса больше максимального количества требуемого масла двигателя за цикл работы двигателя, причем резервуар подвода топлива имеет емкость топлива, по крайней мере, равную требуемому двигателем количеству топлива в течение большого количества циклов работы двигателя при максимальной скорости потребления топлива двигателем, и средство для управления подачей масла во время каждого цикла работ средства насоса для поддержания по существу постоянного заранее установленного соотношения между количеством топлива и количеством масла, подаваемыми в двигатель за цикл работы, содержит средство для поддержания по существу одинакового давления упомянутого топлива в резервуаре для подачи в средство дозирования топлива, средство, способное работать под влиянием и одновременно с потреблением топлива из упомянутого резервуара для приведения в действие упомянутого средства насоса, причем упомянутая аппаратура способна отдельно подавать в двигатель топливо и масло.
Средство для управления подачей масла приспосабливают для поддержания, по существу, одинакового соотношения между давлениями топлива в резервуаре и подаваемого насосом масла.
На фиг. 1 представлен вид в поперечном разрезе блока подачи
топлива и дозирования масла
на фиг.
2 представлен вид в поперечном разрезе блока дозирования топлива.
на фиг. 3 - вид в поперечном разрезе дозирующей камеры и участка дозирующего плунжера, показанного на фиг. 2 блока дозирования топлива /увеличено/.
на фиг. 4 - вид в разрезе блока инжектора.
Обращаясь теперь к фиг. 1 прилагаемых чертежей, отметим, что здесь представлен вид в поперечном разрезе через блок топливного и масляного насосов, который содержит устройство дозирования масла.
Штуцер 1 ввода масла соединен с масляным бачком /не показанным/ для подачи масла в канал для смазки 2 через одноходовой клапан 3, смещаемый пружиной 3А в закрытое положение. Из канала 2 масло выпускается через штуцер 4 под управлением одноходового клапана 5, смещаемого в закрытое положение пружиной 5А. Шток 6 дозирования масла имеет скользящую посадку второго класса точности в камере 7 масляного насоса, образующей канал для смазки 2.
Перемещение дозирующего штока 6 по направлению вверх, как видно на фиг. 1, втягивает масло в канал 2 из бачка подачи масла через клапан 3. Перемещение дозирующего штока 6 вниз выпускает масло из канала 2 по штуцеру 4 через клапан 5. Штуцер 4 подсоединяют соответствующей нагнетательной трубкой или трубками и/или каналом, или каналами для подачи масла в соответствующее место в двигателе.
В многоцилиндровом двигателе канал 2 и шток дозирования 6 можно делать с соответственными размерами, чтобы один блок дозирования масла мог снабжать маслом для смазывания все детали многоцилиндрового двигателя. В качестве альтернативы, для подачи смазки к каждому цилиндру и соответствующим подшипникам можно обеспечивать индивидуальные блоки дозирования масла одинаковой конструкции.
Шток дозирования масла 6 выступает в камеру подвода топлива 8 и в центральной части соединен с диафрагмой 9, которая образует одну стенку топливной камеры 8. Топливная камера 8 связана с каналом подвода топлива 10 и каналом подачи топлива 11 через соответственные одноходовые клапаны 12 и 13, ток что перемещение диафрагмы 9 вверх, если смотреть на фиг. 1, втягивает топливо в камеру 8, а при перемещении вниз - подает топливо из камеры 8 в блок дозирования топлива, дальнейшее описание которого приведено ниже. Как показано на фиг. 1, диафрагма 9 находится в своем растянутом положении, поэтому топливная камера 8 заполнена до своей максимальной емкости топливом и, таким образом, шток дозирования масла 6 находится в своем верхнем положении. При этом канал для смазки 2 также оказывается заполненным маслом.
По мере потребления топлива блоком впрыска топлива диафрагма 9 перемещается вниз и, в свою очередь, вызывает перемещение штока дозирования масла 6 также вниз. Поскольку шток дозирования 6 жестко соединен с средней частью 9А мембраны 9, каждый из них соответственно перемещается вниз и, таким образом, масло вытесняется из канала 2 со скоростью, прямо пропорциональной скорости потребления топлива из топливной камеры 8. Таким образом видно, что вышеописанный механизм обеспечивает очень простое, надежное и эффективное средство для дозирования подачи масла в двигатель со скоростью, непосредственно связанной со скоростью потребления топлива.
Чтобы обеспечить усилие, необходимое для осуществления подачи топлива и масла, нижняя сторона диафрагмы 14 непосредственно подвергается, по существу, постоянному давлению газа, находящегося в камере 15, и это давление соответствует почти максимальному давлению, достигаемому в отсеке картера двигателя с двухтактным циклом во время каждого цикла. С целью получения этого состояния давление в камере 15 устанавливают приводимый в действие давлением клапан /не показанный/ типа обычного запорного вентиля для соединения по выбору картера с камерой 15.
Для передачи диафрагме 9 усилия, создаваемого на диафрагме 14, устанавливают рычаг 16, удерживаемый поворотным образом на оси 17. Таким образом, в камере 15 получается давление, кратное давлению в камере 8 из-за разницы площадей двух диафрагм 9 и 14, которое регулируется действиями пружины 18 и давлением масла в канале 2.
По мере потребления топлива из топливной камеры 8, диафрагма 14 перемещается вверх, если смотреть на фиг. 1, пока регулируемый ограничитель хода 19 соприкоснется с шариком 20, расположенным в гнезде 21, находящимся на диафрагме 14. Благодаря этому камера 15 сообщается с атмосферой и шарик 20 после этого возвращается, чтобы оказаться на неподвижном выступе 22, а диафрагма 14 перемещается вниз до тех пор, пока гнездо 21 снова не соединится с шариком 20. В то же самое время пружина 18 перемещает диафрагму 9 вверх, благодаря чему через клапан 10 в камеру 8 всасывается топливо, и через клапан 3 в канал 2 стягивается масло, а затем цикл повторяется.
Из вышеприведенного описания конструкции и работы объединенной системы подачи топлива и масла должно быть ясно, что при согласованном перемещении диафрагмы 9 и штока дозирования 6, приводимых в действие диафрагмой 14 и рычагом 16, будет поддерживаться, по существу, постоянное соотношение между скоростью подвода топлива и скоростью подвода масла к двигателю.
Обращаясь теперь к фиг. 2 и 3 отметим, что по каналу 11 подачи топлива, на который делалась ссылка в вышеприведенном описании в отношении фиг. 1, топливо подводится к камере накапливания топлива 23, в которую включен демпфер 24 давления, предназначенный для поддержания в камере 23, по существу, постоянного давления топлива. Демпфер 24 содержит нагруженную пружиной диафрагму 25. Через топливную камеру 23 проходит полый шток 26 дозирования топлива, в стенке которого имеется отверстие 27 для обеспечения непрерывной связи между камерой 23 накапливания топлива и внутренней полостью 28 в штоке 26 дозирования топлива. Верхний конец штока дозирования топлива 26 закрывается плунжером 29, к которому он жестко прикреплен.
Нижний конец штока дозирования 26 располагают в камере дозирования 30 /фиг. 3/, в которой он может перемещаться в осевом направлении с целью изменения емкости топлива дозирующей камеры. Смонтированный на нижнем конце дозирующего штока узел 31 одноходового клапана управляет связью между внутренней полостью 28 дозирующего штока 26 и камерой дозирования топлива 30. На противоположном конце дозирующей камеры 30 одноходовой клапан 32 управляет потоком топлива из дозирующей камеры 30 в трубопровод для подвода топлива к точке подачи в двигатель.
Плунжер 29, жестко подсоединенный к дозирующему штоку 26, перемещается в цилиндре 33 под действием приложения давления текучей среды в цилиндре 33. Приложение этого давления текучей среды перемещает плунжер 29 и шток дозирования топлива 26 вправо, если смотреть на фиг. 3, и при таком перемещении вызывает закрывание одноходового клапана 31 и открывание одноходового клапана 32, так что находящееся в топливной камере 30 топливо выпускается по каналу подачи 34. Таким образом, можно видеть, что посредством изменения хода плунжера 29, а отсюда и дозирующего штока 26, можно изменять количество подаваемого в двигатель топлива во время каждого хода дозирующего штока 26 так, чтобы удовлетворять потребности двигателя в топливе.
Клапаны 31 и 32 имеют обычную конструкцию, каждый из которых нагружен пружиной, переводящей клапан в закрытое положение.
Клапан 31 в дозирующем штоке 26 открывается тогда, когда давление во внутренней полости 28 выше давления в дозирующей камере 30 на заданную величину, и точно так же клапан 32 открывается тогда, когда давление в дозирующей камере выше давления в канале подачи 34. Клапан 31 открывается при более низком давлении, чем клапан 32.
Чтобы добиться изменения количества подаваемого в двигатель топлива, на оси 35 вращательным образом смонтирован кулачок 36 для взаимодействия с регулируемым ограничителем хода 37 плунжера, который управляет возвратным положением плунжера 29 в цилиндре 33. Величина хода плунжера вправо на фиг. 2 фиксируется кольцеобразным заплечиком 38. Таким образом, когда ограничитель хода плунжера 37 движется к заплечику 38, т.е. вправо, если смотреть на фиг. 2, ход штока дозирования топлива 26 уменьшается и, следовательно, количество топлива, подаваемого из камеры дозирования топлива 30 при каждом ходе плунжера, уменьшается, и наоборот.
В соответствии с этим, управляя ходом плунжера 29 посредством действия кулачка 36, можно изменять скорость подачи топлива в двигатель. Действием кулачка управляют непосредственный привод или можно управлять через соответствующий электронный блок управления, чтобы корректировать количество подаваемого в двигатель топлива в зависимости от нагрузки и скорости двигателя.
Обычно подаваемой в камеру 33 текучей средой для приведения в действие плунжера 29 может быть воздух, который подается под действием нагнетания в картере двигателя с двухтактным циклом через соответствующее устройство управления давлением. Воздух под давлением можно получать из того же источника, который используют для приведения в действие мембраны 14, как было описано выше в отношении фиг. 1 чертежей.
Синхронизацию приложения давления воздуха к плунжеру регулируют известным способом с целью осуществления подачи топлива в требуемый момент цикла работы двигателя. Топливо можно подавать по трубке 34 непосредственно к инжекторной насадке с давлением топлива, достаточным для впрыска в систему всасывания воздуха, или камеру сгорания двигателя, либо к топливному инжектору соответствующей формы.
Следует понимать, что систему подвода топлива и масла, описываемую в отношении фиг. 1 чертежей, можно использовать для подвода топлива к устройству дозирования топлива, конструкция которого отличается от показанной на фиг. 2 и 3. В равной степени, описанное в связи с фиг. 2 и 3, устройство дозирования топлива можно использовать с устройством подвода топлива, отличающимся от описанного в отношении фиг. 1.
Обращаясь теперь к фиг. 4, отметим, что на ней иллюстрируется блок топливного инжектора 39, смонтированного непосредственно на головке цилиндра 40 двигателя внутреннего сгорания.
Дозированное количество топлива из описанного в отношении фиг. 2 и 3 блока дозирования топлива по трубке 34 один раз в течение цикла работы двигателя подается к топливной камере 41 в соответствии с требуемым для двигателя количеством топлива.
Клапан 42 инжекторной насадки 43 соединяют через стержень клапана 44, который проходит через топливную камеру 41, с якорем 45 соленоида 46, расположенного внутри корпуса инжектора 47. Этот клапан 42 смещается в закрытое положение тарельчатой пружиной 48 и открывается посредством возбуждения соленоида 46.
На фиг. 4 клапан 42 показан в открытом положении. Возбуждением соленоида 46 управляют посредством электронного блока управления /не показанного/ во временной зависимости от цикла работы двигателя с целью осуществления подачи топлива из топливной камеры 41 в цилиндр двигателя.
Топливная камера 41 заполняется воздухом из соответствующего источника, по существу, с постоянным давлением. Посредством возбуждения соленоида 46 клапан 42 перемещается вниз, открывая насадку 43, так что дозированное количество топлива, удерживаемое в топливной камере 41, переносится воздухом с высоким давлением, выходящим из топливной камеры 41, через насадку 43 в камеру сгорания 49 цилиндра двигателя.
Синхронизацией подачи топлива в камеру сгорания двигателя управляют известным способом с помощью электронного блока управления. Воздух с высоким давлением в топливной камере можно обеспечивать от внешнего источника через впускной канал 50. В качестве альтернативы, канал 50 в инжекторном блоке можно опустить, а из камеры сгорания двигателя подавать газ с высоким давлением.
Это можно достигнуть посредством удержания насадки 43 в открытом положении в течение какого-то периода времени после завершения впрыска топлива, когда давление газа в камере сгорания 49 все еще нарастает. Таким образом, газ /в значительной степени воздух/ с давлением выше, чем в камере сгорания во время впрыска, подают в камеру 41 и удерживают в ней при подготовке подачи топлива во время следующего цикла работы двигателя. Насадку предпочтительно закрывают до того, как продукты сгорания из цилиндра двигателя могут попасть в топливную камеру 41 и обычно до прохождения воспламенения топлива. Задержание газа высокого давления из камеры сгорания в топливной камере инжектора устраняет необходимость использования компрессора для обеспечения подачи газа с давлением, достаточным для осуществления впрыска топлива.
Следует понимать, что описанные здесь способ и аппаратура дозирования подачи смазочного масла в двигатель можно применять к двигателям, в которых используют другие формы дозирования и подачи топлива, чем описанные здесь практические устройства. В частности, способ и аппаратуру можно использовать совместно с двигателями, имеющему систему впрыска топлива, в котором осуществляют впрыск только топлива, в отличие от описанной здесь системы, в которой топливо впрыскивают посредством увлечения воздухом. Топливо можно впрыскивать непосредственно в камеру сгорания двигателя или в систему всасывания воздуха двигателя. Топливо можно также подавать посредством карбюраторной системы подачи топлива.
Использование: изобретение относится к способам управления подачей смазочного масла в двухтактном ДВС. Сущность изобретения: топливо подают к топливному инжектору из топливного резервуара, имеющего емкость топлива по крайней мере, равную требуемому количеству топлива для двигателя в течение множества циклов его работы при максимальной скорости потребления топлива двигателем. Подачу масла в двигатель осуществляют посредством принудительного средства объемного насоса, имеющего скорость подачи на цикл работы насоса больше максимального требуемого двигателем количества масла на цикл работы двигателя. Масляный насос приводят в действие топливом из упомянутого резервуара и одновременно с ним, и управляют подачей масла во время каждого цикла работы насоса для поддержания по существу постоянного, заранее заданного соотношения между количеством топлива и количеством масла подаваемых в двигатель за цикл работы. Способ предусматривает раздельную подачу топлива и масла в двигатель без их смешения. Дана конструкция устройства для реализации способа 2 с. и 10 з. п. ф-лы, 4 ил.