Код документа: RU2436969C2
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к электростанции комбинированного цикла.
Точнее говоря, настоящее изобретение относится к электростанции комбинированного цикла, характерной особенностью которой является наличие теплоутилизационного парогенератора, работающего в дожигательном режиме.
УРОВЕНЬ ТЕХНИКИ
Электростанция комбинированного цикла обычно содержит газотурбинный блок; паротурбинный блок; контур циркуляции пара, простирающийся через первые и вторые теплообменные модули, расположенные в ряд; и теплоутилизационный парогенератор, работающий в режиме дожигания, который передает пару остаточную энергию отработанных газов, выходящих из газотурбинного блока, и снабжен первой механически регулируемой горелкой для нагрева первых и вторых теплообменных модулей; и вторую механически регулируемую горелку, расположенную между первыми и вторыми теплообменными модулями и установленную с возможностью нагрева только вторых теплообменных модулей. Электростанции вышеуказанного типа раскрыты в следующих документах известного уровня техники ЕР 899505, ЕР 1701006, WO 98/38599, US 4136643 и GB 2287312.
В теплоутилизационных парогенераторах описанного выше типа, работающих в дожигательном режиме, одиночная горелка, работающая в дожигательном режиме, расположена у газотурбинной электростанции, т.е. выше по потоку относительно теплообменных модулей применительно к направлению потока газа.
Такая конфигурация теплоутилизационного парогенератора, работающего в режиме дожигания, приводит, с одной стороны, к повышенному производству электроэнергии, а с другой стороны, - к пониженной эффективности электростанции комбинированного цикла. Снижение эффективности связано с тем, что теплоутилизационный парогенератор спроектирован таким образом, чтобы он функционировал как в режиме дожигания электростанции, так и в отличном от него, и с тем, что теплообменные модули теплоутилизационного парогенератора спроектированы для максимизации эффективности в режиме, отличном от режима дожигания. При переключении теплоутилизационного парогенератора из режима, отличного от режима дожигания, в режим дожигания электростанции возникает избыточное повышение температуры пара до уровня, при котором пар необходимо систематически охлаждать перед его подачей в паротурбинную электростанцию. Количество требуемого охлаждения прямо пропорционально количеству газа, сжигаемого в режиме дожигания, что, таким образом, серьезно ослабляет эффективность электростанции комбинированного цикла.
Другой критической особенностью теплоутилизационных парогенераторов, работающих в режиме дожигания, является повышение температуры дыма, что требует замены стандартных комплектующих деталей теплоутилизационного парогенератора на более дорогие детали, даже вплоть до необходимости замены всего теплоутилизационного парогенератора на еще более дорогой стандартный парогенератор.
Ввиду вышеописанных недостатков, электростанции комбинированного цикла часто снабжают теплоутилизационными парогенераторами, работающими в режиме, отличном от режима дожигания.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ.
Задачей настоящего изобретения является обеспечение электростанции комбинированного цикла, сконструированной для устранения недостатков известного уровня техники, и которая, в частности, генерирует больше энергии просто и дешево, без серьезного ослабления эффективности.
Согласно настоящему изобретению, обеспечена электростанция комбинированного цикла, содержащая газотурбинный блок; паротурбинный блок; контур циркуляции пара, простирающийся через первые и вторые теплообменные модули, расположенные в ряд; и теплоутилизационный парогенератор, работающий в режиме дожигания, который передает пару остаточную энергию отработанных газов, выходящих из газотурбинного блока, и снабжен первой механически регулируемой горелкой для нагрева первых и вторых теплообменных модулей; и вторую механически регулируемую горелку расположенную между первыми и вторыми теплообменными модулями и установленную с возможностью нагрева только вторых теплообменных модулей; первый и второй датчики температуры для испускания сигнала температуры, соответствующего температуре пара на отрезке контура циркуляции пара, соединяющего первые теплообменные модули и паротурбинный блок, и сигнала температуры, соответствующего температуре пара на отрезке контура циркуляции пара, соединяющего вторые теплообменные модули и паротурбинный блок; и блок управления для регулировки мощности первой горелки и второй горелки как функции сигналов температуры, при этом электростанция содержит линии для подачи топлива к первой и второй горелкам, и отличается тем, что блок управления выполнен с возможностью испускания сигнала мощности, который определяет полную подачу топлива к первой и второй горелкам, и сигнала деления для разделения подаваемого топлива между первой и второй горелками, являющегося функцией сигналов температуры.
Настоящее изобретение обеспечивает повышение эффективности электростанции во всех рабочих условиях, при сильном снижении требований к охлаждению пара.
Испытания методом моделирования, проводимые заявителем, показывают, что настоящее изобретение обеспечивает легкое повышение выработки электроэнергии электростанцией в целом, по сравнению с известным уровнем техники, и для заданного количества топлива, сжигаемого в режиме после остановки электростанции; значительное повышение эффективности электростанции; и значительное снижение температуры выхлопных газов в режиме дожигания, что, таким образом, допускает значительную свободу в выборе материалов, из которых изготовлены теплообменные модули теплоутилизационного парогенератора.
Настоящее изобретение также относится к способу эксплуатации электростанции комбинированного цикла.
Согласно настоящему изобретению, обеспечен способ эксплуатации электростанции комбинированного цикла, причем электростанция комбинированного цикла содержит газотурбинный блок; паротурбинный блок; контур циркуляции пара, простирающийся через первые и вторые теплообменные модули, расположенные в ряд; и теплоутилизационный парогенератор, работающий в режиме дожигания, который передает пару остаточную энергию отработанных газов, выходящих из газотурбинного блока, при этом способ содержит этапы нагрева первых и вторых теплообменных модулей первой механически регулируемой горелкой, и нагрева только вторых теплообменных модулей второй механически регулируемой горелкой, расположенной между первыми и вторыми теплообменными модулями; испускания сигнала температуры, соответствующего температуре пара на отрезке контура циркуляции пара, соединяющего первые теплообменные модули и паротурбинный блок, и сигнала температуры, соответствующего температуре пара на отрезке контура циркуляции пара, соединяющего вторые теплообменные модули и паротурбинный блок, регулирования мощности первой горелки и второй горелки как функции сигналов температуры посредством блока управления, и отличающийся тем, что регулируют мощность теплоутилизационного парогенератора, работающего в режиме дожигания за счет регулирования полной подачи топлива в первую и вторую горелки посредством сигнала мощности и являющейся функцией потребления мощности и полной мощности, подаваемой газотурбинным блоком и паротурбинным блоком, и делением подаваемого топлива между первой и второй горелками с помощью сигнала деления, являющегося функцией сигналов температуры.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Неограничивающий вариант воплощения изобретения будет описан в виде примера со ссылкой на прилагаемые чертежи, на которых:
Фиг.1 иллюстрирует схему электростанции комбинированного цикла в соответствии с настоящим изобретением;
Фиг.2 иллюстрирует блок-схему блока управления электростанции, представленной на Фиг.1.
ПРЕДПОЧТИТЕЛЬНЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Номер 1 на Фиг.1 обозначает как единое целое электростанцию комбинированного цикла, содержащую газотурбинный блок 2 и паротурбинный блок 3. Газотурбинный блок 2, который представляет собой первый двигатель электростанции 1 комбинированного цикла, можно снабжать топливом в виде природного газа или газойля, соединен с генератором 4 переменного тока и содержит вал 5, компрессор 6, камеру 7 сгорания и газовую турбину 8.
Паротурбинный блок 3 соединен с генератором 9 переменного тока и содержит вал 10; паровую турбину 11 высокого давления; паровую турбину 12 среднего давления; паровую турбину 13 низкого давления; конденсатор 14 и теплообменный модуль 15 - в показанном примере - испаритель/деаэратор.
Электростанция 1 комбинированного цикла содержит теплоутилизационный парогенератор 16 для восстановления остаточного тепла, генерируемого газотурбинным блоком 2; и контур 17 циркуляции пара, который снабжает паротурбинный блок 3 и простирается через теплоутилизационный парогенератор 16.
Теплоутилизационный парогенератор 16 содержит камеру 18 сгорания, простирающуюся от выхода газовой турбины 8 до входа 19 в батареею (не показана), и кожух контура 17 циркуляции пара. Иными словами, газы сгорания и газы, остающиеся после дожигания, по существу подают в направлении D1 внутри камеры 18 сгорания, тогда как пар по существу подают в направлении D2, противоположном направлению D1. Теплоутилизационный парогенератор 16 содержит механически регулируемую горелку 20 типа горелки для воздушно-реактивного двигателя, помещенную в камеру 18 сгорания, у выпуска газовой турбины 8; и механически регулируемую горелку 21 типа горелки для воздушно-реактивного двигателя, помещенную в камеру 18 сгорания, расположенную ниже по потоку относительно горелки 20 в направлении D1.
Контур 17 циркуляции пара содержит ветвь 22, соединяющую конденсатор 14 с теплоутилизационным парогенератором 16, и вдоль которой установлен конденсационный насос 23 от конденсатора 14. Внутри камеры 18 сгорания ветвь 22 снабжает теплообменный модуль 24, расположенный около входа 19 в батарею, для нагрева конденсата. Ниже по потоку относительно теплообменного модуля 24 в направлении D2 ветвь 22 снабжает испаритель/деаэратор 15, расположенный внутри камеры 18 сгорания, и рециркуляционную ветвь 25, простирающуюся снаружи камеры 18 сгорания, и вдоль которой установлен рециркуляционный насос 26. Ветвь 25 предназначена для нагрева конденсата, перед его подачей в теплоутилизационный парогенератор 16, для предотвращения явления конденсации.
Из теплообменного модуля (испаритель/деаэратор) 15 выходит контур 17 циркуляции пара, содержащий ветвь 27 пара низкого давления, снабжающую паровую турбину 13 низкого давления; ветвь 28 пара среднего давления, снабжающую паровую турбину 12 среднего давления; и ветвь 29 пара высокого давления, снабжающую паровую турбину 11 высокого давления.
Ветвь 27 в показанном примере снабжает теплообменный модуль 30, пароперегреватель низкого давления, помещенный в камеру 18 сгорания и соединенный с соединительной ветвью 31, выходящей из выпуска паровой турбины 12 среднего давления, до снабжения паровой турбины 13 низкого давления.
Ветвь 28 содержит питающий насос 32 и снабжает последовательно теплообменный модуль 33 (показан в примере), экономайзер среднего давления; и теплообменный модуль 34 (показан в примере), испаритель среднего давления, помещенный в камеру сгорания 18. Выше по потоку относительно испарителя 34 среднего давления в направлении D1 ветвь 28 снабжает теплообменный модуль 35 (показан в примере), пароперегреватель среднего давления, выше по потоку относительно которого она соединяется с ветвью 36 из паровой турбины 11 высокого давления, перед возвращением в камеру 18 сгорания. Затем, ветвь 28 последовательно снабжает два теплообменных модуля 37 и 38, показанные в примере, два последовательных промежуточных пароподогревателя и паровую турбину 12 среднего давления.
Пароохладитель F1 расположен на ветви 28, между теплообменными модулями 37 и 38, для охлаждения пара, когда его температура превышает заданное пороговое значение.
Ветвь 29 имеет питающий насос 39 и снабжает теплообменный модуль 40 (показан в примере), экономайзер высокого давления, помещенный в камеру 18 сгорания, между испарителем/деаэратором (теплообменным модулем 15) и испарителем среднего давления (теплообменным модулем 34); и теплообменный модуль 41 (показан в примере), дополнительный экономайзер высокого давления расположен ниже по потоку относительно испарителя 34 среднего давления в направлении D2. Затем, ветвь 29 снабжает теплообменный модуль 42 (показан в примере), испаритель высокого давления, ниже по потоку относительно которого он последовательно снабжает два теплообменных модуля 43 и 44 (показаны в примере), два пароперегревателя высокого давления и паровую турбину 11 высокого давления.
Пароохладитель F2 расположен на ветви 29, между теплообменными модулями 43 и 44, для охлаждения пара, когда его температура превышает заданное пороговое значение.
Электростанция 1 комбинированного цикла содержит линию 45 подачи топлива, обычно газ или газойль, в камеру 7 сгорания; и линию 46 подачи топлива, обычно газа, к горелкам 20 и 21, и которая разветвляется на линию 47 снабжения горелки 20 и линию 48 снабжения горелки 21. Электростанция содержит механизированный клапан 49, расположенный по линии 46; и механический клапан 50, расположенный по линии 47.
Электростанция 1 комбинированного цикла содержит блок 51 управления для селективной активации режима дожигания и режима, отличного от режима дожигания теплоутилизационного парогенератора 16.
Электростанция 1 содержит датчик 52 температуры, расположенный на ветви 28, и который испускает сигнал ТМ, относящийся к температуре пара среднего давления на отрезке между теплоутилизационным парогенератором 16 и входом паровой турбины 12 среднего давления; датчик 53 температуры, расположенный на ветви 29, и который испускает сигнал ТН, с температурой пара высокого давления на отрезке между теплоутилизационным парогенератором 16 и входом паровой турбины 11 высокого давления; датчик 54 мощности, расположенный около генератора 4 переменного тока, и который испускает сигнал Р1, относящийся к мощности, производимой генератором 4 переменного тока; и датчик 55 мощности, расположенный около генератора 9 переменного тока, и который испускает сигнал Р2, относящийся к мощности, производимой генератором 9 переменного тока.
Контрольный блок 51 принимает и обрабатывает сигналы ТМ, ТН, Р1 и Р2; сигнал Pset, относящийся к полной мощности, требуемой для электростанции 1 комбинированного цикла; сигнал TMmax, относящийся к максимальной температуре, допускаемой на ветви 28 пара среднего давления; сигнал TMmin, относящийся к минимальной температуре, допускаемой на ветви 28 пара среднего давления; сигнал THmax, относящийся к максимальной температуре, допускаемой на ветви 29 пара высокого давления; и сигнал THmin, относящийся к минимальной температуре, допускаемой на ветви 29 пара высокого давления.
Контрольный блок 51 генерирует сигнал V1 мощности для регулировки отверстия клапана 49; сигнал деления V2 для регулирования отверстия клапана 50; сигнал R1 для активации и регулировки пароохладителя F1; сигнал R2 для активации и регулировки пароохладителя F2; и аварийный сигнал С, указывающий на неисправность контрольного блока 51 или датчиков 52 и 53.
Что касается Фиг.2, контрольный блок содержит вычислительный блок 56, который рассчитывает разность между сигналом Pset, относящимся к мощности, требуемой для электростанции 1, и суммой сигналов Р1 и Р2, относящейся к полной выходной мощности электростанции 1, и, впоследствии, подает электрический сигнал VI для регулировки клапана 49 для повышения или понижения полного газоснабжения для горелок 20 и 21.
Контрольный блок 51 содержит вычислительные блоки 57-60, которые рассчитывают разность между сигналом THmax и сигналом ТН; между сигналом ТН и сигналом THmin; между сигналом TMmax и сигналом ТМ; и между сигналом ТМ и сигналом TMmin. Контрольный блок 51 содержит блоки 61-64 сравнения, которые определяют, составляют ли вычисленные разности значения больше нуля, и испускают соответствующие сигналы 0, когда условия, заданные в соответствующих блоках 61-64 сравнения удовлетворены, а в противном случае, соответственно, испускают сигналы 1. Контрольный блок 51 содержит логический блок 65, который сопоставляет и определяет любое несовпадение сигналов, испускаемых блоками 61-64 сравнения, например, является ли сигнал ТН одновременно больше, чем THmax и меньше, чем THmin. В случае если это произойдет, логический блок 65 будет испускать аварийный сигнал С, указывающий на неисправность контрольного блока 51 или датчика 52 температуры. Аналогично, несовпадение идентифицируется, если сигнал ТМ одновременно больше, чем TMmax и меньше, чем TMmin. В контрольном блоке 51 в показанном примере существуют всего семь возможных несовместимых ситуаций, что приводит к испусканию аварийного сигнала С.
Когда все блоки сравнения испускают сигналы 0, это означает, что сигналы ТН и ТМ находятся в пределах соответствующих заданных рабочих диапазонов, а логический блок 65 не испускает никаких сигналов.
Когда сигнал ТН не попадает в заданный диапазон, а сигнал ТМ находится в пределах соответствующего заданного диапазона или за пределами соответствующего диапазона и с той же стороны, что и сигнал ТН, логический блок 65 передает разрешающий сигнал S1 на блок 66 управления, позволяющий блоку 66 управления испускать сигнал V2, регулирующий клапан 50. Степень регулировки определяется одним из вычислительных 57-60 блоков, соединенных с блоком 66 управления.
Когда сигнал ТН имеет значение выше заданного максимального значения THmax, а сигнал ТМ имеет значение ниже заданного минимального значения TMmin, или когда сигнал ТМ находится выше заданного максимального значения TMmax, а сигнал ТН находится ниже заданного минимального значения THmin, воздействия только на горелку 20 недостаточно для восстановления правильных рабочих температур, таким образом, что блок управления испускает сигнал R1 или R2 для активации пароохладителя F1 или F2.
Эксплуатацию пароохладителей F1 и F2 также можно разрешить посредством таймера (не показан), который определяет продолжительность ненормальных условий эксплуатации, даже после разделения мощности между первой и второй горелкой, соответственно, 20 и 21.
Функционирование пароохладителей F1 и F2 поглощает на себя тепловую энергию от электростанции 1 комбинированного цикла, поэтому может представлять необходимость только при двух режимах работы применительно к шестнадцати колонкам в матрице логического блока 65. Это становится возможным благодаря теплоутилизационному парогенератору 16, содержащему две горелки 20, 21, расположенные около различных частей теплоутилизационного парогенератора 16, и благодаря возможности регулирования подачи топлива к горелкам 21, 22, при поддержании полного топливоснабжения горелок 21, 22 на постоянном уровне.
Теплоутилизационный парогенератор 16 простирается от выхода газовой турбины 8 и является предпочтительным, чтобы теплообменные модули 15, 24, 30, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44 были распределены, как показано в прилагаемых чертежах. То есть от выхода газовой турбины 8 до входного отверстия 19 теплообменный модуль 38 среднего давления, теплообменный модуль 44 высокого давления, теплообменный модуль 37 среднего давления, теплообменный модуль 43 высокого давления и теплообменный модуль 42 (испаритель высокого давления) расположены последовательно в направлении D1 внутри камеры 18 сгорания. Горелка 20 расположена между выходом газовой турбины 8 и теплообменным модулем 38 среднего давления, тогда как горелка 21 расположена между теплообменным модулем 43 высокого давления и теплообменным модулем 42 (испарителем высокого давления). Является предпочтительным, чтобы горелки 20 и 21 были ориентированы в направлении D1. То есть тепловая энергия, генерируемая горелкой 20, направляется к теплообменному модулю 38 высокого давления, а энергия, генерируемая горелкой 21, направляется к испарителю 42 высокого давления.
Ниже по потоку относительно теплообменного модуля 42 (испарителя высокого давления) последовательно расположены в направлении D1: теплообменный модуль 35 среднего давления, теплообменный модуль 41 высокого давления, теплообменный модуль 34 (испаритель среднего давления), теплообменный модуль 30 среднего давления, теплообменный модуль 40 высокого давления, теплообменный модуль 33 среднего давления, теплообменный модуль 15 (испаритель/деаэратор) и теплообменный модуль 24 ветви 22 от конденсатора 14.
В непоказанном варианте, теплообменный модуль 15 (испаритель/деаэратор) заменен испарителем, помещенным внутрь камеры 18 сгорания, и деаэратором, расположенным снаружи камеры 18 сгорания.
Особо заслуживает внимания расположение горелок 20 и 21 между газовой турбиной 8 и теплообменным модулем 42 (испарителем высокого давления), которое представляет собой область теплоутилизационного парогенератора 16, в котором максимальные температуры, наиболее существенные как для пара, так и для структуры теплоутилизационного парогенератора 16, достигаются в режиме после отключения электростанции.
Как должно быть ясно из вышеприведенного описания, преимущества настоящего изобретения многочисленны как с точки зрения повышенной эффективности и производимой мощности электростанции комбинированного цикла, так и с точки зрения снижения стоимости материалов, из которых изготовлены теплообменные модули теплоутилизационного парогенератора 16.
Изобретение относится к электростанции комбинированного цикла. Электростанция комбинированного цикла содержит газотурбинный блок, паротурбинный блок, контур циркуляции пара, простирающийся через первые и вторые теплообменные модули, и теплоутилизационный парогенератор, работающий в режиме дожигания, который передает пару остаточную энергию отработанных газов, выходящих из газотурбинного блока, и снабжен первой механически регулируемой горелкой для нагрева первых и вторых теплообменных модулей, и вторую механически регулируемую горелку, расположенную между первыми и вторыми теплообменными модулями и установленную с возможностью нагрева только вторых теплообменных модулей, первый и второй датчики температуры для испускания сигнала температуры, соответствующего температуре пара на отрезке контура циркуляции пара, соединяющего первые теплообменные модули и паротурбинный блок, и сигнала температуры, соответствующего температуре пара на отрезке контура циркуляции пара, соединяющего вторые теплообменные модули и паротурбинный блок, и блок управления для регулировки мощности первой горелки и второй горелки как функции сигналов температуры, при этом электростанция содержит линии для подачи топлива к первой и второй горелкам, причем блок управления выполнен с возможностью испускания сигнала мощности, который определяет полную подачу топлива к первой и второй горелкам, и сигнала деления для разделения подаваемого топлива между первой и второй горелками, являющийся функцией сигналов (ТН, ТМ) температуры. Изобретение позволяет обеспечить повышение эффективности электростанции во всех рабочих усл