Код документа: RU2661120C1
Область техники, к которой относится изобретение
Варианты осуществления изобретения, раскрытого здесь, касаются промывочного сопла и газотурбинного двигателя.
Краткий обзор известного уровня техники
Как известно, газотурбинные двигатели, в частности их компрессоры, подвергаются загрязнению и поэтому должны неоднократно очищаться в течение их срока службы.
Обычный способ очистки газотурбинного двигателя состоит в прерывании его нормальной эксплуатации и промывке без разборки двигателя. Это так называемая промывка в режиме "на холодной прокрутке" (off-line) и она выполняется посредством жидкого моющего средства. После обработки жидким моющим средством часто необходимо смывание этого средства. Промывка в режиме "на холодной прокрутке" очень эффективна, однако, так или иначе, она подразумевает прерывание нормальной эксплуатации и поэтому увеличивает время простоя машины и установки, содержащей машину.
Также известна, даже если и менее распространена, промывка газотурбинного двигателя во время эксплуатации, то есть когда двигатель находится в рабочем режиме. Это так называемая промывка в режиме "на ходу" (on-line) и состоит она в добавлении жидкого моющего средства к газу, поступающему в компрессор. В этом случае количество жидкого моющего средства, добавляемого к газу, мало (более точно, отношение жидкости к газу поддерживается низким), и давление выбрасываемого жидкого моющего средства низко, для того чтобы избежать:
- нарушения работы компрессора и/или турбины и/или камеры сгорания (например, сгорание может гаситься из-за жидкого моющего средства),
- нарушения протекания текучей среды в компрессоре,
- повреждения компонентов компрессора (например, капельки жидкого моющего средства, если таковые имеются, могут ударяться, например, о вращающиеся лопасти компрессора).
Следует отметить, что жидкие моющие средства, используемые для промывки в режиме "на холодной прокрутке", обычно отличаются от жидких моющих средств, используемых для промывки в режиме "на ходу".
Известные способы промывки в режиме "на ходу" намного менее эффективны, чем известные способы промывки в режиме "на холодной прокрутке", даже если они имеют преимущество в отсутствии влияния на время простоя машины и установки, содержащей машину.
Сущность изобретения
Следовательно, существует потребность в улучшенном способе промывки газотурбинных двигателей и в устройствах, позволяющих это сделать.
Было предложено распылять жидкое промывочное вещество в направлении входа компрессора двигателя; предпочтительно, отношение жидкости к газу на входе компрессора больше 1%, но меньше 5% по отношению к расчетному массовому расходу компрессора; предпочтительно, давление распыляемого жидкого моющего вещества является довольно высоким, обычно больше 0,2 МПа, но меньше 2,0 МПа.
Особая конструкция распыляющих сопл также была предложена для оптимальных характеристик, в частности, при вышеупомянутых условиях.
Первым аспектом настоящего изобретения является сопло для распыления жидкого вещества.
Сопло используется для распыления жидкого вещества в направлении компрессора газотурбинного двигателя, и содержит:
- удлиненный корпус, имеющий конец для выброса жидкого вещества,
- канал для жидкого вещества, внутренний к упомянутому удлиненному корпусу и проходящий до упомянутого конца, и
- выемку, расположенную на упомянутом конце, причем канал оканчивается в упомянутой выемке; при этом выемка открывается в направлении боковой поверхности удлиненного корпуса, а канал является касательным к низу выемки.
Вторым аспектом настоящего изобретения является газотурбинный двигатель.
Газотурбинный двигатель содержит компрессор, турбину ниже по потоку от компрессора, и множество сопл для распыления жидкого промывочного вещества в направлении входа компрессора; предпочтительно, сопла имеют отличительные признаки, описанные выше.
Краткое описание чертежей
Прилагаемые чертежи, которые входят в состав настоящего описания и составляют его часть, иллюстрируют примеры осуществления настоящего изобретения и вместе с подробным описанием объясняют эти примеры осуществления. На чертежах:
На фиг. 1 показан упрощенный вид варианта осуществления компрессора газотурбинного двигателя.
На фиг. 2 показан упрощенный вид варианта осуществления сопла (фиг. 2А соответствует продольному разрезу, а фиг. 2В соответствует поперечному разрезу).
На фиг. 3 показана временная диаграмма варианта осуществления этапа промывки.
На фиг. 4 показана временная диаграмма последовательности этапов промывки согласно фиг. 3.
Подробное описание
Нижеследующее описание примеров осуществления ссылается на прилагаемые чертежи.
Нижеследующее описание не ограничивает изобретение. Вместо этого, объем изобретения определяется прилагаемой формулой изобретения.
Ссылки всюду в описании на "один вариант осуществления изобретения" или "варианты осуществления изобретения" означают, что конкретная особенность, конструкция или характеристика, описанная в соединении с вариантом осуществления изобретения, включена по меньшей мере в один вариант осуществления изобретения. Таким образом, появление фраз "в одном варианте осуществления изобретения" или "в вариантах осуществления изобретения" в различных местах повсюду в описании не обязательно относится к одному и тому же варианту осуществления изобретения. Далее, конкретные особенности, конструкции или характеристики могут комбинироваться любым подходящим способом в одном или нескольких вариантах осуществления изобретения.
Фиг. 1 представляет собой изображение половины разреза и на ней частично показан вариант осуществления газотурбинного двигателя; в частности, на ней показан передний корпус, содержащий раструб 2 и пулевидный обтекатель 3, (необязательный) средний корпус, содержащий стойки 5 и впускные направляющие лопатки 6, а также компрессор 1, содержащий ротор (см. позиции 7 и 8) и статор (см. позицию 9). Передний корпус, в частности, раструб 2 и пулевидный обтекатель 3, и средний корпус, в частности, его внешняя стенка 12 и его внутренняя стенка 13, определяют впускной путь, который ведет ко входу компрессора 1. Сразу после входа компрессора 1 находится первая ступень ротора компрессора (показана только одна лопасть 7). Иногда, комбинация переднего корпуса, среднего корпуса и компрессора 1 называется в целом "компрессором".
В общем, газотурбинный двигатель содержит последовательное соединение компрессора (такого как показанный частично на фиг. 1), камеры сгорания с устройствами сгорания (не показанными на фиг. 1) и турбины (не показанной на фиг. 1).
На фиг. 1 показаны только немногие компоненты ротора и статора компрессора 1, в частности, вал 8 ротора, одна лопасть 7 первой ступени ротора, кожух 9 статора; в частности, на ней не показано ни одной из лопастей других ступеней ротора и ни одной из лопастей ступеней статора.
В решении, показанном на фиг. 1, имеется множество сопл 4 (показано только одно) для распыления жидкого промывочного вещества L в направлении входа компрессора 1.
В данном варианте осуществления изобретения сопла 4 расположены на раструбе 2, то есть на гладкой сходящейся поверхности, используемой для направления газа к первой ступени компрессора, в частности, для направления газа G во впускной путь, ведущий ко входу компрессора 1 через стойки 5 и впускные направляющие лопатки 6.
Сопла 4 выбрасывают жидкое промывочное вещество L и распыляют его; таким путем капельки жидкости L могут уноситься потоком газа G (см. фиг. 1).
Жидкое промывочное вещество L распыляется на определенном расстоянии от внешней стенки (см. позиции 2 и 12) входного тракта компрессора 1 и на определенном расстоянии от внутренней стенки (см. позиции 3 и 13) впускного пути компрессора 1 и в определенном направлении (см. фиг. 1) так, чтобы гарантировать хорошее и надлежащее распределение жидкости в потоке газа внутри впускного пути.
В варианте осуществления изобретения, показанном на фиг. 1, среднее направление жидкого вещества L наклонено относительно среднего направления газа G.
В варианте осуществления изобретения, показанном на фиг. 1, сопла 4 расположены по окружности (с центром на оси 100 двигателя) и на одинаковом расстоянии друг от друга; в частности, все сопла 4 соединены по текучей среде с одной магистралью 15, которая предпочтительно сформирована как окружность (с центром на оси 100 двигателя и расположенная позади раструба 2).
Также имеется блок 19 управления, функционально связанный с магистралью 15 так, чтобы управлять выбросом жидкого промывочного вещества L; таким путем все сопла 4 выбрасывают одинаковое количество жидкого вещества за одно и то же время.
Вариант осуществления сопла 4 показан на фиг. 2 и он может использоваться для распыления жидкого вещества, в частности, жидкого промывочного вещества L в варианте осуществления изобретения, показанном на фиг. 1.
Сопло 4 содержит удлиненный цилиндрический корпус 20, имеющий первый конец 20-1 для приема жидкого вещества L и второй конец 20-4 для выброса жидкого вещества L. Имеется также первая промежуточная часть 20-2 и вторая промежуточная часть 20-3; часть 20-2 используется для крепления сопла 4 к раструбу 2; часть 20-3 используется для установки расстояния между точкой выброса и внешней стенкой (см. позиции 2 и 12) впускного пути.
Канал 21 для потока жидкого вещества L является внутренним для удлиненного цилиндрического корпуса 20 и проходит от первого конца 20-1 через промежуточные части 20-2 и 20-3 до второго конца 20-4.
Выемка 22 расположена на конце 20-4, и канал 21 заканчивается в выемке 22; когда жидкое вещество L достигает выемки 22, оно выбрасывается из выемки 22 и распыляется; степень распыления зависит от давления выше по потоку от выемки 22 и формы выемки 22. Чтобы увеличивать давление, канал 21 имеет некоторое (относительно большое) поперечное сечение в начальной части 21-1, то есть у первого конца 20-1, и меньшее поперечное сечение в его конечной части 21-2, то есть у второго конца 20-4.
В варианте осуществления изобретения, показанном на фиг.2, выемка 22 сконфигурирована по диаметру цилиндрического корпуса 20 и открывается в направлении к боковой поверхности цилиндрического корпуса 20; таким образом, газ G течет вокруг цилиндрического корпуса 20 (см. в частности фиг. 2В) и жидкость L защищена цилиндрическим корпусом 20 (см. в частности фиг. 2В); в варианте осуществления, показанном на фиг. 1, сопла 4 расположены далеко от места, где имеется интенсивный поток газа G.
В варианте осуществления изобретения, показанном на фиг. 2, хороший выброс жидкого вещества достигается посредством канала 21, в частности, его конечной частью 21-2, касательной к низу выемки 22 (см. в частности фиг. 2А); в любом случае, канал может быть по существу касательным к выемке 22, что означает на малом осевом расстоянии от низа выемки 22, меньшим, чем 0,1 мм.
Это особое соединение по жидкости между выемкой 22 и каналом 21 создает однородное разбрызгивание жидкости и лучшее распыление.
В частности, благодаря каналу 21, касательному к выемке 22, создаваемые капельки жидкости имеют диаметры, находящиеся в диапазоне между 150 и 450 мкм, предпочтительно, между 250 и 300 мкм.
Направление и расходимость струи выбрасываемого жидкого вещества L зависят также от формы поперечного сечения выемки 22. В варианте осуществления, показанном на фиг. 2, эта форма является частично плоской (см. часть, близкую к поверхности входного отверстия) и частично искривленной (см. фиг. 2А), например дугой окружности или параболы или гиперболы; часть, соединяющая плоскую и искривленную части, соответствует низу выемки 22.
Согласно вариантам осуществления способа промывка газотурбинного двигателя выполняется во время работы газотурбинного двигателя и включает этап промывки, который состоит в распылении жидкого промывочного вещества по направлению ко входу компрессора двигателя; распыление может выполняться, как показано на фиг. 1, то есть выше по потоку от стоек и впускных направляющих лопаток; распыление может выполняться, как показано на фиг. 1, то есть из раструба компрессора.
Массовый расход распыляемого жидкого промывочного вещества предпочтительно устанавливается так, чтобы отношение жидкости к газу на входе компрессора было больше 1%, но меньше 5% по отношению к расчетному массовому расходу компрессора. Следует отметить, что в варианте осуществления, показанном на фиг.1, часть жидкого промывочного вещества останавливается из-за стоек и/или впускных направляющих лопаток и не достигает первой ступени компрессора. Благодаря большому количеству жидкости достигается хорошая степень промывки.
Отношение жидкости к газу составляет, более предпочтительно, больше 1%, но меньше 3%, еще более предпочтительно - приблизительно 2%; эти отношения представляют очень хорошие компромиссы между количеством жидкости и помехами для работы компрессора и всего газотурбинного двигателя.
Следует отметить, что отношение жидкости к газу упоминается обычно как отношение воды к воздуху (Water-to-Air Ratio, WAR), так как жидкость обычно является водой, а газ - обычно воздухом.
Давление распыляемого жидкого промывочного вещества составляет предпочтительно больше 0,2 МПа, но меньше 2,0 МПа (это давление в конце канала, внутреннего к распыляющему соплу, как раз перед распылением, то есть, как показано на фиг. 2, в области части 21-2), давление распыляемого жидкого промывочного вещества составляет более предпочтительно больше 0,8 МПа, но меньше 1,2 МПа. Благодаря высокому давлению и высокой скорости жидкости достигается хорошая степень распыления и поэтому получается хорошая смесь жидкости и газа, создаются малые помехи работе компрессора и не причиняются никакие (или причиняются очень малые) механические повреждения компонентам компрессора.
Как показано в примере осуществления на фиг. 2, диаметр части 21-2 находится в диапазоне 1,0-2,0 мм (например, 1,8 мм), диаметр сопла 4 - в диапазоне 10-20 мм (например, 18 мм), давление в части 21-2 - в диапазоне 0,2-2,0 МПа (обычно 0,8-1,2 МПа) и скорость в части 21-2 - в диапазоне 5-30 м/с (например, 22 м/с).
Комбинация высокого отношения жидкости к газу и высокого давления жидкости является синергической для достижения хорошей степени промывки во время работы двигателя.
Другими важными аспектами для хороших рабочих характеристик являются: расстояние между точками выброса жидкости и внешней стенкой (см. например элементы 2 и 12 в варианте осуществления, показанном на фиг. 1) впускного пути компрессора, расстояние между точками выброса жидкости и внутренней стенкой (см., например элементы 3 и 13 в варианте осуществления, показанном на фиг. 1) впускного пути компрессора и направление распыления (см., например, элемент 4 в варианте осуществления, показанном на фиг. 1); при выборе этих параметров следует рассмотреть расход газа. Удобным месторасположением для распыления жидкости является передняя сторона компрессора, из его раструба (см., например элемент 4 в варианте осуществления, показанном на фиг. 1).
Особенно для промывки в режиме "на ходу" очень подходящей жидкостью является чистая вода.
Этап промывки WF, показанный на фиг. 3, включает:
- первый подэтап SF1, в течение которого расход жидкого промывочного вещества постепенно увеличивается (от нуля до, например, заданного значения FL),
- второй подэтап SF2, в течение которого расход жидкого промывочного вещества поддерживается постоянным (например, на заданном значении FL), и
- необязательно, третий подэтап SF3, в течение которого расход жидкого промывочного вещества постепенно уменьшается (от заданного значения FL до нуля).
Постепенное увеличение выгодно тем, что состав смеси текучей среды через компрессор изменяется постепенно. По той же самой причине постепенное уменьшение выгодно, даже если немного менее важно. Так или иначе, возможны альтернативные этапы промывки; например, в течение второго подэтапа, расход может не быть постоянным и/или значение расхода может зависеть от условий эксплуатации компрессора.
Второй подэтап SF2 длится в течение заранее заданного периода времени Т2, который больше 0,5 мин, но меньше 5 мин; предпочтительно, он длится 1-2 мин; так что является довольно коротким. Первый подэтап SF1 длится в течение заранее заданного периода времени Т1, который больше 5 с, но меньше 30 с; так что он довольно длинный по сравнению со вторым подэтапом SF2. Третий подэтап SF3 длится в течение заранее заданного периода времени Т3, который больше 5 с, но меньше 30 с; так что он довольно длинный по сравнению со вторым подэтапом SF2. Первый подэтап SF1 и третий подэтап SF3 могут иметь одинаковую продолжительность.
Очень хорошие результаты достигаются, если этап промывки WF повторяется несколько раз в сутки, в частности, заранее заданное число раз в течение заранее заданного отрезка времени, как это показано на фиг. 4; на этой фигуре период времени между этапом промывки и следующим этапом является различным (см. позиции Р1 и Р2), но может быть проще повторять их периодически. При нормальном режиме работы число повторений в сутки выбирается в диапазоне от 1 до 10 и обычно составляет приблизительно 4.
Благодаря вышеупомянутым мерам и с соответствующими предосторожностями этапы промывки могут выполняться в любое время во время работы газотурбинного двигатели; никакая промывка не требуется при пуске и при остановке газотурбинного двигателя.
Описанное выше, в частности, техническое решение сопла и техническое решение процесса промывки обычно применимо к газотурбинному двигателю, в частности, к его компрессору (см. например фиг. 1).
Некоторые из особенностей процесса промывки могут быть реализованы посредством конструкция сопла 4 в варианте осуществления изобретения, показанном на фиг. 1.
Некоторые из особенностей процесса промывки могут быть реализованы посредством блока управления 19 в варианте осуществления изобретения, показанном на фиг. 1.
Сопло используется для распыления жидкого вещества по направлению к компрессору (1) газотурбинного двигателя и содержит: удлиненный корпус, имеющий конец для выброса жидкого вещества, канал для жидкого вещества, внутренний относительно упомянутого удлиненного корпуса и проходящий до упомянутого конца, выемку, расположенную на упомянутом конце. Технический результат: возможность промывки газотурбинного двигателя во время работы. 2 н. и 7 з.п. ф-лы, 4 ил.
Форсунка и способ промывки компрессоров газотурбинных установок
Форсунка и способ промывки компрессоров газотурбинных установок