4-амино-6-(гетероциклил)пиколинаты и 6-амино-2-(гетероциклил)пиримидин-4-карбоксилаты и их применение в качестве гербицидов - RU2672584C2

Код документа: RU2672584C2

Описание

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ

Настоящая заявка претендует на приоритет предварительной заявки на патент США с порядковым номером 61/790 391, поданной 15 марта 2013 года, содержание которой прямо включено в настоящую заявку посредством ссылки.

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к гербицидным соединениям и композициям, а также к способам борьбы с нежелательной растительностью.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Появление нежелательной растительности, например, сорняков, является постоянной проблемой, встающей перед земледельцами в насаждениях с/х культур, на пастбищах и других местах. Сорняки конкурируют с культурными растениями и негативно влияют на урожайность. Применение химических гербицидов является важным средством борьбы с нежелательной растительностью.

По-прежнему существует потребность в новых химических гербицидах, которые предлагают возможность борьбы с более широким спектром сорняков, более высокую селективность, минимальное повреждение культурных растений, устойчивость при хранении, легкость в обращении, более высокую активность против сорняков и/или позволяют преодолеть устойчивость к гербицидам, которая развивается в отношении препаратов, применяемых в настоящее время.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к соединениям формулы (I):

где

X означает N или CY, где Y представляет собой водород, галоген, C1-C3 алкил, C1-C3 галогеналкил, C1-C3 алкокси, C1-C3 галогеналкокси, C1-C3 алкокси, C1-C3 алкилтио или C1-C3 галогеналкилтио;

R1 представляет собой OR1' или NR1"R1"', где R1' представляет собой водород, C1-C8 алкил или C7-C10 арилалкил, и R1"и R1"', независимо представляют собой водород, C1-C12 алкил, C3-C12 алкенил или C3-C12 алкинил;

R2 означает галоген, C1-C4 алкил, C1-C4 галогеналкил, C2-C4 алкенил, C2-C4 галогеналкенил, C2-C4 алкинил, C1-C4 алкокси, C1-C4 галогеналкокси, C1-C4 алкилтио, C1-C4 галогеналкилтио, амино, C1-C4 алкиламино, C2-C4 галогеналкиламино, формил, C1-C3 алкилкарбонил, C1-C3 галогеналкилкарбонил, циано или группу формулы -CR17=CR18-SiR19R20R21, где R17 означает водород, F или Cl; R18 означает водород, F, Cl, C1-C4 алкил или C1-C4 галогеналкил, и R19,R20 и R21 независимо представляют собой C1-C10 алкил, C3-C6 циклоалкил, фенил, замещенный фенил, C1-C10 алкокси или OH;

R3 и R4 независимо представляют собой водород, C1-C6 алкил, C1-C6 галогеналкил, C3-C6 алкенил, C3-C6 галогеналкил, C3-C6 алкинил, формил, C1-C3 алкилкарбонил, C1-C3 галогеналкилкарбонил, C1-C6 алкоксикарбонил, C1-C6 алкилкарбамил, C1-C6 алкилсульфонил, C1-C6 триалкилсилил, C1-C6 диалкилфосфонил, или R3 и R4 совместно с атомом N образуют 5- или 6-членный насыщенный или ненасыщенный цикл, или же R3 и R4 совместно представляют собой =СR3'(R4'), где R3' и R4' независимо представляют собой водород, C1-C6 алкил, C3-C6 алкенил, C3-C6 алкинил, C1-C6 алкокси или C1-C6 алкиламино, или R3' и R4' совместно с =C представляют собой 5- или 6-членный насыщенный цикл;

A представляет собой одну из групп Ar1-Ar28:

R5 представляет собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил, C1-C3 алкокси, C1-C3 галогеналкокси, C1-C3 алкилтио, C1-C3 галогеналкилтио, амино, C1-C4 алкиламино или C2-C4 галогеналкиламино;

R6 представляет собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил, C1-C3 алкокси, C1-C3 галогеналкокси, C1-C3 алкилтио, C1-C3 галогеналкилтио, амино, C1-C4 алкиламино или C2-C4 галогеналкиламино;

R6' означает водород или галоген;

R6" представляет собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил, циклопропил, галогенциклопропил, C2-C4 алкенил, C2-C4 галогеналкенил, C2-C4 алкинил, C1-C3 алкокси, C1-C3 галогеналкокси, C1-C3 алкилтио, C1-C3 галогеналкилтио, амино, C1-C4 алкиламино, C2-C4 галогеналкиламино, CN или NO2;

R7 и R7' независимо представляют собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил или C1-C3 алкокси;

R8 и R8' независимо представляют собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил или C1-C3 алкокси;

R9, R9', R9" и R9"' независимо представляют собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил или C1-C3 алкокси;

R10 представляет собой водород, C1-C6 алкил, C1-C6 галогеналкил, C3-C6 алкенил, C3-C6 галогеналкил, C3-C6 алкинил, формил, C1-C3 алкилкарбонил, C1-C3 галогеналкилкарбонил или C1-C6 триалкилсилил;

коэффициент m, если он присутствует в формуле, означает 0, 1 или 2; и

коэффициент n, если он присутствует в формуле, означает 0, 1 или 2;

или N-оксид или приемлемая для сельскохозяйственного применения соль указанного соединения; при условии, что A не является

Кроме того, изобретение относится к способам борьбы с нежелательной растительностью, которые включают применение соединения формулы (I) или его N-оксида или приемлемой для сельскохозяйственного применения соли.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Определения

В настоящем описании, гербицид и гербицидно-активной ингредиент означает соединение, которое борется с нежелательной растительностью при применении в необходимом количестве.

В настоящем описании борьба с нежелательной растительностью означает уничтожение или предотвращение ее роста или обеспечение какого-либо другого нежелательного модифицирующего действия на эти растения, например, отклонения от естественного роста или развития, регулирование, обезвоживание, замедление развития и т.п.

В настоящем описании гербицидно-эффективное количество или количество, достаточное для борьбы с растительностью, представляет собой количество гербицидно-активного ингредиента, применение которого позволяет осуществлять борьбу с соответствующим нежелательным растением.

В настоящем описании применение (нанесение) гербицида или гербицидной композиции означает доставку этой композиции непосредственно к намеченному растению или к месту, где оно находится, или к участку, на котором желательно проводить борьбу с нежелательной растительностью. Способы применения включают, не ограничиваясь этим, предвсходовое приведение в контакт с почвой или водой, послевсходовое приведение в контакт с нежелательной растительностью или областью, находящейся в непосредственной близости с нежелательной растительностью.

В настоящем описании, растения и растительность включают, не ограничиваясь этим, семена в состоянии покоя, проросшие семена, всходы, растения, прорастающие из вегетативных побегов, незрелые растения и развившиеся растения.

В настоящем описании, термин "соли и сложные эфиры, приемлемые для сельскохозяйственного применения", относится к солям и сложным эфирам, которые демонстрируют гербицидную активность или к тем, которые превращаются или могут превращаться в растениях, воде и почве в соответствующий гербицид. Типовыми примерами сложных эфиров, приемлемых для сельскохозяйственного применения, являются соединения, которые подвергаются или могут подвергаться гидролизу, окислению, метаболизму или другим превращениям, например, в растениях, воде или почве, в соответствующие карбоновые кислоты, которые в зависимости от значения pH могут находиться в диссоциированной или недиссоциированной форме.

Подходящие соли включают соли, образованные щелочными и щелочноземельными металлами, а также образованные аммиаком и аминами. Предпочтительные катионы включают катионы натрия, калия, магния и аммония формулы:

где каждый из заместителей R13, R14, R15 и R16 независимо представляет собой водород или C1-C12 алкил, C3-C12 алкенил или C3-C12 алкинил, каждый из которых необязательно замещен одним или несколькими фрагментами гидрокси, C1-C4 алкокси, C1-C4 алкилтио или фенильными группами, при условии, что заместители R13, R14, R15 и R16 являются стерически совместимыми. Кроме того любые два заместителя из числа R13, R14, R15 и R16 совместно могут представлять собой двухвалентный алифатический фрагмент, содержащий от одного до двенадцати атомов углерода и до двух атомов кислорода или серы. Соли соединений формулы (I) можно получать обработкой соединения формулы (I) гидроксидом металла, например, гидроксидом натрия, амином, например, аммиаком, триметиламином, диэтаноламином, 2-метилтиопропиламином, бисаллиламином, 2-бутоксиэтиламином, морфолином, циклододециламином или бензиламином, или гидроксидом тетраалкиламмония, например, гидроксидом тетраметиламмония или холингидроксидом. Соли с аминами часто являются предпочтительными формами соединений формулы (I), поскольку они растворимы в воде и позволяют получать желаемые композиции гербицидов на водной основе.

Соединения формулы (I) включают N-оксиды. Пиридин N-оксиды можно получать окислением соответствующих пиридинов. Подходящие методики окисления описаны, например, в Houben-Weyl, Methoden ger organischen Chemie (Методики органической химии) расширения и дополнительные тома к 4-у изданию, volume E 7b, p.565f.

В настоящей заявке, если не указано иное, термин "ацил" относится к формилу, C1-C3 алкилкарбонилу и C1-C3 галогеналкилкарбонилу. C1-C6 ацил относится к формилу, C1-C5алкилкарбонилу и C1-C5 галогеналкилкарбонилу (группа содержит в общей сложности от 1 до 6 атомов углерода).

В настоящей заявке термин "алкил" относится к насыщенному, линейному или разветвленному углеводородному фрагменту. Если не указано иное, имеются в виду C1-C10 алкильные группы. Примеры включают метил, этил, пропил, 1-метилэтил, бутил, 1-метилпропил, 2-метилпропил, 1,1-диметилэтил, пентил, 1-метилбутил, 2-метилбутил, 3-метилбутил, 2,2-диметилпропил, 1-этилпропил, гексил, 1,1-диметилпропил, 1,2-диметилпропил, 1-метилпентил, 2-метилпентил, 3-метилпентил, 4-метилпентил, 1,1-диметилбутил, 1,2-диметилбутил, 1,3-диметилбутил, 2,2-диметилбутил, 2,3-диметилбутил, 3,3-диметилбутил, 1-этилбутил, 2-этилбутил, 1,1,2-триметилпропил, 1,2,2-триметилпропил, 1-этил-1-метилпропил и 1-этил-2-метилпропил.

В настоящей заявке, термин "галогеналкил" относится к линейной или разветвленной алкильной группе, где в этой алкильной группе атомы водорода могут быть частично или полностью замещены атомами галогена. Если не указано иное, подразумеваются группы C1-C8. Примеры включают хлорметил, бромметил, дихлорметил, трихлорметил, фторметил, дифторметил, трифторметил, хлорфторметил, дихлорфторметил, хлордифторметил, 1-хлорэтил, 1-бромэтил, 1-фторэтил, 2-фторэтил, 2,2-дифторэтил, 2,2,2-трифторэтил, 2-хлор-2-фторэтил, 2-хлор-2-дифторэтил, 2,2-дихлор-2-фторэтил, 2,2,2-трихлорэтил, пентафторэтил и 1,1,1-трифторпроп-2-ил.

В настоящей заявке, термин "алкенил" относится к ненасыщенному, линейному или разветвленному углеводородному фрагменту, содержащему двойную связь. Если не указано иное, подразумеваются алкенилы C2-C8. Алкенильные группы могут содержать более одного ненасыщенного фрагмента. Примеры включают этенил, 1-пропенил, 2-пропенил, 1-метилэтенил, 1-бутенил, 2-бутенил, 3-бутенил, 1-метил-1-пропенил, 2-метил-1-пропенил, 1-метил-2-пропенил, 2-метил-2-пропенил, 1-пентенил, 2-пентенил, 3-пентенил, 4-пентенил, 1-метил-1-бутенил, 2-метил-1-бутенил, 3-метил-1-бутенил, 1-метил-2-бутенил, 2-метил-2-бутенил, 3-метил-2-бутенил, 1-метил-3-бутенил, 2-метил-3-бутенил, 3-метил-3-бутенил, 1,1-диметил-2-пропенил, 1,2-диметил-1-пропенил, 1,2-диметил-2-пропенил, 1-этил-1-пропенил, 1-этил-2-пропенил, 1-гексенил, 2-гексенил, 3-гексенил, 4-гексенил, 5-гексенил, 1-метил-1-пентенил, 2-метил-1-пентенил, 3-метил-1-пентенил, 4-метил-1-пентенил, 1-метил-2-пентенил, 2-метил-2-пентенил, 3-метил-2-пентенил, 4-метил-2-пентенил, 1-метил-3-пентенил, 2-метил-3-пентенил, 3-метил-3-пентенил, 4-метил-3-пентенил, 1-метил-4-пентенил, 2-метил-4-пентенил, 3-метил-4-пентенил, 4-метил-4-пентенил, 1,1-2-бутенил, 1,1-диметил-3-бутенил, 1,1-диметил-3-бутенил, 1,2-диметил-1-бутенил, 1,2-диметил-2-бутенил, 1,2-диметил-3-бутенил, 1,3-диметил-1-бутенил, 1,3-диметил-2-бутенил, 1,3-диметил-3-бутенил, 2,2-диметил-3-бутенил, 2,3-диметил-1-бутенил, 2,3-диметил-2-бутенил, 2,3-диметил-3-бутенил, 3,3-диметил-1-бутенил, 3,3-диметил-2-бутенил, 1-этил-1-бутенил, 1-этил-2-бутенил, 1-этил-3-бутенил, 2-этил-1-бутенил, 2-этил-2-бутенил, 2-этил-3-бутенил, 1,1,2-триметил-2-пропенил, 1-этил-1-метил-2-пропенил, 1-этил-2-метил-1-пропенил и 1-этил-2-метил-2-пропенил. Термин "винил" относится к группе, имеющей структуру -CH=CH2; термин 1-пропенил относится к группе, имеющей структуру -CH=CH-CH3; и термин 2-пропенил относится к группе, имеющей структуру -CH2-CH=CH2.

В настоящей заявке термин "алкинил" относится к линейной или разветвленной углеводородной группе, содержащей тройную связь. Если не указано иное, подразумеваются C2-C8 алкинильные группы. Алкинильные группы могут содержать более одного ненасыщенного фрагмента. Примеры включают C2-C6 алкинил, например, этинил, 1-пропинил, 2-пропинил (или пропаргил), 1-бутинил, 2-бутинил, 3-бутинил, 1-метил-2-пропинил, 1-пентинил, 2-пентинил, 3-пентинил, 4-пентинил, 3-метил-1-бутинил, 1-метил-2-бутинил, 1-метил-3-бутинил, 2-метил-3-бутинил, 1,1-диметил-2-пропинил, 1-этил-2-пропинил, 1-гексинил, 2-гексинил, 3-гексинил, 4-гексинил, 5-гексинил, 3-метил-1-пентинил, 4-метил-1-пентинил, 1-метил-2-пентинил, 4-метил-2-пентинил, 1-метил-3-пентинил, 2-метил-3-пентинил, 1-метил-4-пентинил, 2-метил-4-пентинил, 3-метил-4-пентинил, 1,1-диметил-2-бутинил, 1,1-диметил-3-бутинил, 1,2-диметил-3-бутинил, 2,2-диметил-3-бутинил, 3,3-диметил-1-бутинил, 1-этил-2-бутинил, 1-этил-3-бутинил, 2-этил-3-бутинил и 1-этил-1-метил-2-пропинил.

В настоящей заявке термин "алкокси" относится к группе формулы R-O-, где R означает алкил, соответствующий данному выше определению. Если не указано иное, подразумеваются алкоксигруппы, в которых остаток R представляет собой C1-C8 алкильную группу. Примеры включают метокси, этокси, пропокси, 1-метил-этокси, бутокси, 1-метилпропокси, 2-метилпропокси, 1,1-диметилэтокси, пентокси, 1-метилбутилокси, 2-метилбутилокси, 3-метилбутилокси, 2,2-диметилпропокси, 1-этилпропокси, гексокси, 1,1-диметилпропокси, 1,2-диметилпропокси, 1,2-диметилпропокси, 1-метилпентокси, 2-метилпентокси, 3-метилпентокси, 4-метилпентокси, 1,1-диметилбутокси, 1,2-диметилбутокси, 1,3-диметилбутокси, 2,2-диметилбутокси, 2,3-диметилбутокси, 3,3-диметилбутокси, 1-этилбутокси, 2-этилбутокси, 1,1,2-триметилпропокси, 1,2,2-триметилпропокси, 1-этил-1-метилпропокси и 1-этил-2-метилпропокси.

В настоящей заявке, термин "галогеналкокси" относится к группе формулы R-O-, где R является галогеналкилом, соответствующим данному выше определению. Если не указано иное, имеются в виду галогеналкоксигруппы, в которых R представляет собой C1-C8 алкильную группу. Примеры включают хлорметокси, бромметокси, дихлорметокси, трихлорметокси, фторметокси, дифторметокси, трифторметокси, хлорфторметокси, дихлорфторметокси, хлордифторметокси, 1-хлорэтокси, 1-бромэтокси, 1-фторэтокси, 2-фторэтокси, 2,2-дифторэтокси, 2,2,"-трифторэтокси, 2-хло-2-фторэтокси, 2-хлор-2-дифторэтокси, 2,2-дихлор-2-фторэтокси, 2,2,2-трихлорэтокси, пентафторэтокси и 1,1,1-трифторпроп-2-окси.

В настоящей заявке, термин "алкилтио" относится к группе формулы R-S-, где R означает алкил, соответствующий данному выше определению. Если не указано иное, имеются в виду алкилтиогруппы, в которых R представляет собой C1-C8 алкильную группу. Примеры включают метилтио, этилтио, пропилтио, 1-метилэтилтио, бутилтио, 1-метил-1-пропилтио, 2-метилпропилтио, 1,1-диметилэтилтио, пентилтио, 1-метилбутилтио, 2-метилбутилтио, 3-метилбутилтио, 2,2-диметилпропилтио, 1-этилпропилтио, гексилтио, 1,1-диметилпропилтио, 1,2-диметилпропилтио, 1-метилпентилтио, 2-метилпентилтио, 3-метилпентилтио, 4-метилпентилтио, 1,1-диметилбутилтио, 1,2-диметилбутилтио, 1,3-диметилбутилтио, 2,2-диметилбутилтио, 2,3-диметилбутилтио, 3,3-диметилбутилтио, 1-этилбутилтио, 2-этилбутилтио, 1,1,2-триметилпропилтио, 1,2,2-триметилпропилтио, 1-этил-1-метилпропилтио и 1-этил-2-метилпропилтио.

В настоящей заявке, термин галогеналкилтио относится к алкилтио группе, соответствующей данному выше определению, где атомы углерода частично или полностью замещены атомами галогена. Если не указано иное, имеются в виду галогеналкилтиогруппы, в которых R представляет собой C1-C8 алкильную группу. Примеры включают хлорметилтио, бромметилтио, дихлорметилтио, трихлорметилтио, фторметилтио, дифторметилтио, трифторметилтио, хлорфторметилтио, дихлорфторметилтио, хлордифторметилтио, 1-хлорэтилтио, 1-бромэтилтио, 1-фторэтилтио, 2-фторэтилтио, 2,2-дифторэтилтио, 2,2,-трифторэтилтио, 2-хлор-2-фторэтилтио, 2-хлор-2-дифторэтилтио, 2,2-дихлор-2-фторэтилтио, 2,2,2-трихлорэтилтио, пентафторэтилтио и 1,1,1-трифторпроп-2-илтио.

В настоящей заявке термин "арил", а также производные термины, такие как "арилокси", относятся к фенильной, инданильной или нафтильной группе, причем фенил является предпочтительным. Термин "гетероарил", а также производные термины, такие как "гетероарилокси" относятся к 5- или 6-членному ароматическому циклу, содержащему один или несколько гетероатомов, а именно N, O или S; эти гетероароматические циклы могут быть конденсированы с другими ароматическими системами. Арильные или гетероарильные заместители могут быть незамещенными или замещенными одним или несколькими заместителями, выбранными из галогена, гидрокси, нитро, циано, формила, C1-C6 алкила, C2-C6 алкенила, C2-C6 алкинила, C1-C6 алкокси, C1-C6 галогеналкила, C1-C6 галогеналкокси, C1-C6 ацила, C1-C6 алкилтио, C1-C6 алкилсульфинила, C1-C6 алкилсульфонила, C1-C6 алкоксикарбонила, C1-C6 карбамоила, гидроксикарбонила, C1-C6 алкилкарбонила, аминокарбонила, C1-C6 алкиламинокарбонила, C1-C6 диалкиламинокарбонила, при условии, что заместители являются стерически совместимыми, удовлетворяют правилам химического связывания и энергия напряжения находится в допустимых пределах. Предпочтительные заместители включают галоген, C1-C2 алкил и C1-C2 галогеналкил.

В настоящей заявке, термин "алкилкарбонил" относится к алкильной группе, связанной с карбонильной группой. Термины "C1-C3 алкилкарбонил" и "C1-C3 галогеналкилкарбонил" относятся к группам, в которых C1-C3 алкильная группа связана с карбонильной группой (в общей сложности группа содержит от 2 до 4 атомов углерода).

В настоящей заявке термин "алкоксикарбонил" относится к группе формулы

, где R означает алкил.

В настоящей заявке термин "арилалкил" относится к алкильной группе, замещенной арильной группой. Термин "C7-C10" арилалкил относится к группе, в которой общее число атомов углерода составляет от 7 до 10.

В настоящей заявке термин "алкиламино" относится к аминогруппе, замещенной одной или двумя алкильными группами, которые могут быть одинаковыми или различными.

В настоящей заявке термин "галогеналкиламино" относится к алкиламиногруппе, в которой атомы углерода алкила частично или полностью замещены атомами галогена.

В настоящей заявке термин "C1-C6 алкиламинокарбонил" относится к группе формулы RNHC(O)-, где R представляет собой C1-C6 алкил, и "C1-C6 диалкиламинокарбонил" относится к группе формулы R2NC(O)-, где каждый из заместителей R независимо представляет собой C1-C6 алкил.

В настоящей заявке термин "алкилкарбамил" относится к карбамильной группе, замещенной алкильной группой по атому азота.

В настоящей заявке, термин "алкилсульфонил" относится к группе формулы

, где R означает алкил.

В настоящей заявке термин "карбамил" (который может именоваться также карбамоилом и аминокарбонилом) относится к группе формулы

.

В настоящей заявке термин "диалкилфосфонил" относится к группе формулы

, где R в каждом случае независимо представляет собой алкил.

В настоящей заявке термин "C1-C6 триалкилсилил" относится к группе формулы -SiR3, где каждый из остатков R независимо представляет собой C1-C6 алкильную группу (группа содержит в общей сложности от 3 до 18 атомов углерода).

В настоящей заявке Me относится к метильной группе; OMe относится к метоксигруппе; i-Pr относится к изопропильной группе.

В настоящей заявке термин "галоген", включая производные термины, например "галогензамещенный" относятся к фтору, хлору, брому и йоду.

В настоящей заявке растения и растительность включают, не ограничиваясь этим, проросшие семена, всходы, растения, прорастающие из вегетативных побегов, незрелые растения и развившиеся растения.

Соединения формулы (I)

Настоящее изобретение относится к соединениям формулы (I), которая показана выше, а также их N-оксидам и солям, приемлемым для сельскохозяйственного применения.

В некоторых вариантах осуществления соединение представляет собой карбоновую кислоту или ее приемлемый для сельскохозяйственного применения сложный эфир или соль. В некоторых вариантах осуществления соединение представляет собой карбоновую кислоту или ее метиловый эфир.

В некоторых вариантах осуществления изобретение относится к соединениям формулы (I):

где:

X означает N или CY, где Y представляет собой водород, галоген, C1-C3 алкил, C1-C3 галогеналкил, C1-C3 алкокси, C1-C3 галогеналкокси, C1-C3 алкокси, C1-C3 алкилтио или C1-C3 галогеналкилтио;

R1 представляет собой OR1' или NR1"R1"', где R1' представляет собой водород, C1-C8 алкил или C7-C10 арилалкил, и R1"и R1"' независимо представляют собой водород, C1-C12 алкил, C3-C12 алкенил или C3-C12 алкинил;

R2 означает галоген, C1-C4 алкил, C1-C4 галогеналкил, C2-C4 алкенил, C2-C4 галогеналкенил, C2-C4 алкинил, C1-C4 алкокси, C1-C4 галогеналкокси, C1-C4 алкилтио, C1-C4 галогеналкилтио, амино, C1-C4 алкиламино, C2-C4 галогеналкиламино, формил, C1-C3 алкилкарбонил, C1-C3 галогеналкилкарбонил, циано или группу формулы -CR17=CR18-SiR19R20R21, где R17 означает водород, F или Cl; R18 означает водород, F, Cl, C1-C4 алкил или C1-C4 галогеналкил, и R19,R20 и R21 независимо представляют собой C1-C10 алкил, C3-C6 циклоалкил, фенил, замещенный фенил, C1-C10 алкокси или OH;

R3 и R4 независимо представляют собой водород, C1-C6 алкил, C1-C6 галогеналкил, C3-C6 алкенил, C3-C6 галогеналкил, C3-C6 алкинил, формил, C1-C3 алкилкарбонил, C1-C3 галогеналкилкарбонил, C1-C6 алкоксикарбонил, C1-C6 алкилкарбамил, C1-C6 алкилсульфонил, C1-C6 триалкилсилил, C1-C6 диалкилфосфонил, или R3 и R4 совместно с атомом N образуют 5- или 6-членный насыщенный цикл, или же R3 и R4 совместно представляют собой =СR3'(R4'), где R3' и R4' независимо представляют собой водород, C1-C6 алкил, C3-C6 алкенил, C3-C6 алкинил, C1-C6 алкокси или C1-C6 алкиламино, или R3' и R4' совместно с =C представляют собой 5- или 6-членный насыщенный цикл;

A представляет собой одну из групп Ar1-Ar24:

R5 представляет собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил, C1-C3 алкокси, C1-C3 галогеналкокси, C1-C3 алкилтио, C1-C3 галогеналкилтио, амино, C1-C4 алкиламино или C2-C4 галогеналкиламино;

R6 представляет собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил, C1-C3 алкокси, C1-C3 галогеналкокси, C1-C3 алкилтио, C1-C3 галогеналкилтио, амино, C1-C4 алкиламино или C2-C4 галогеналкиламино;

R6' означает водород или галоген;

R6" представляет собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил, циклопропил, галогенциклопропил, C2-C4 алкенил, C2-C4 галогеналкенил, C2-C4 алкинил, C1-C3 алкокси, C1-C3 галогеналкокси, C1-C3 алкилтио, C1-C3 галогеналкилтио, амино, C1-C4 алкиламино, C2-C4 галогеналкиламино, CN или NO2;

R7 и R7' независимо представляют собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил или C1-C3 алкокси;

R8 и R8' независимо представляют собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил или C1-C3 алкокси;

R9, R9', R9" и R9"' независимо представляют собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил или C1-C3 алкокси;

R10 представляет собой водород, C1-C6 алкил, C1-C6 галогеналкил, C3-C6 алкенил, C3-C6 галогеналкил, C3-C6 алкинил, формил, C1-C3 алкилкарбонил, C1-C3 галогеналкилкарбонил или C1-C6 триалкилсилил;

коэффициент m, если он присутствует в формуле, означает 0, 1 или 2; и

коэффициент n, если он присутствует в формуле, означает 0, 1 или 2;

или N-оксид или приемлемая для сельскохозяйственного применения соль указанного соединения; при условии, что A не является

В некоторых вариантах осуществления коэффициент m, если он присутствует в формуле, представляет собой 0 или 1; и коэффициент n, если он присутствует в формуле, означает 0. В некоторых вариантах осуществления коэффициент m, если он присутствует в формуле, представляет собой 1; и коэффициент n, если он присутствует в формуле, означает 1.

В некоторых вариантах осуществления R1 представляет собой OR1', где R1' представляет собой водород, C1-C8 алкил или C7-C10 арилалкил.

В некоторых вариантах осуществления R2 означает галоген, C2-C4 алкенил, C2-C4 галогеналкенил или C1-C4 алкокси. В некоторых вариантах осуществления R2 означает галоген, C2-C4 алкенил или C1-C4 алкокси. В некоторых вариантах осуществления R2 означает Cl, OMe, винил или 1-пропенил. В некоторых вариантах осуществления R2 означает Cl. В некоторых вариантах осуществления R2 означает OMe. В некоторых вариантах осуществления R2 означает винил или 1-пропенил.

В некоторых вариантах осуществления R3 и R4 независимо представляют собой водород, C1-C6 алкил, C1-C6 галогеналкил, C3-C6 алкенил, C3-C6 галогеналкенил, C3-C6 алкинил, формил, C1-C3 алкилкарбонил, C1-C3 галогеналкилкарбонил, C1-C6 алкоксикарбонил, C1-C6 алкилкарбамил, или R3 и R4 совместно представляют собой =CR3'(R4'), где R3' и R4' независимо представляют собой водород, C1-C6 алкил, C3-C6 алкенил, C3-C6 алкинил, C1-C6 алкокси или C1-C6 алкиламино. В некоторых вариантах осуществления R3 и R4 независимо представляют собой водород, C1-C6 алкил, C1-C6 галогеналкил, C3-C6 алкенил, C3-C6 галогеналкенил, формил, C1-C3 алкилкарбонил, C1-C3 галогеналкилкарбонил, или R3 и R4 совместно представляют собой =CR3'(R4'), где R3' и R4' независимо представляют собой водород, C1-C6 алкил, C1-C6 алкокси или C1-C6 алкиламино. В некоторых вариантах осуществления как минимум один из заместителей R3 и R4 является водородом. В некоторых вариантах осуществления оба заместителя R3 и R4 являются атомами водорода.

В некоторых вариантах осуществления X означает N, CH или CF. В некоторых вариантах осуществления X означает N. В некоторых вариантах осуществления X означает CH. В некоторых вариантах осуществления X означает CF.

В некоторых вариантах осуществления Ar представляет собой Ar1, Ar3, Ar4, Ar7, Ar9, Ar10, Ar13, Ar15, Ar16, Ar19, Ar21, Ar22, Ar25 или Ar27.

В некоторых вариантах осуществления Ar представляет собой Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, Ar7, Ar8, Ar15, Ar16, Ar17, Ar18, Ar25, Ar26, Ar27 или Ar28.

В некоторых вариантах осуществления Ar представляет собой Ar1, Ar3, Ar7, Ar9, Ar10, Ar13, Ar15, Ar16, Ar19, Ar21 или Ar22.

В некоторых вариантах осуществления Ar представляет собой Ar2, Ar4, Ar5, Ar6, Ar8, Ar11, Ar12, Ar14, Ar17, Ar18, Ar20, Ar23, Ar24, Ar26 или Ar28.

В некоторых вариантах осуществления Ar представляет собой Ar2, Ar5, Ar6, Ar8, Ar11, Ar12, Ar14, Ar17, Ar18, Ar20, Ar23 или Ar24.

В некоторых вариантах осуществления Ar представляет собой Ar1, Ar2, Ar3, Ar4, Ar6 или Ar7.

В некоторых вариантах осуществления Ar представляет собой Ar15, Ar16, Ar17 или Ar18.

В некоторых вариантах осуществления R5 представляет собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил, C1-C3 алкокси, C1-C3 галогеналкокси, C1-C3 алкилтио или C1-C3 галогеналкилтио.

В некоторых вариантах осуществления R5 представляет собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил или C1-C3 алкокси. В некоторых вариантах осуществления R5 представляет собой водород или F. В некоторых вариантах осуществления R5 представляет собой водород. В некоторых вариантах осуществления R5 представляет собой F.

В некоторых вариантах осуществления R6 представляет собой водород или галоген. В некоторых вариантах осуществления R6 представляет собой водород или F. В некоторых вариантах осуществления R6 представляет собой водород. В некоторых вариантах осуществления R6 представляет собой F.

В некоторых вариантах осуществления R6' представляет собой водород или галоген. В некоторых вариантах осуществления R6' представляет собой водород или F. В некоторых вариантах осуществления R6' представляет собой водород. В некоторых вариантах осуществления R6' представляет собой F.

В некоторых вариантах осуществления R6" представляет собой водород, галоген, C1-C4 алкил, C1-C4 галогеналкил, циклопропил, C2-C4 алкинил, CN или NO2. В некоторых вариантах осуществления R6" представляет собой водород, галоген, C1-C4 галогеналкил или циклопропил. В некоторых вариантах осуществления R6" представляет собой водород или галоген. В некоторых вариантах осуществления R6" представляет собой C1-C4 галогеналкил. В некоторых вариантах осуществления R6" представляет собой CN. В некоторых вариантах осуществления R6" представляет собой NO2.

В некоторых вариантах осуществления:

R2 означает галоген, C2-C4 алкенил, C2-C4 галогеналкенил или C1-C4 алкокси;

оба заместителя R3 и R4 являются атомами водорода; и

X означает N, CH или CF.

В некоторых вариантах осуществления:

R2 означает галоген, C2-C4 алкенил или C1-C4 алкокси;

оба заместителя R3 и R4 являются атомами водорода;

X означает N, CH или CF;

Ar представляет собой Ar1, Ar3, Ar7, Ar9, Ar10, Ar13, Ar15, Ar16, Ar19, Ar21 или Ar22;

R5 означает водород или F;

R6 означает водород или F;

R6' означает водород;

R7, R7', R8, R8', R9, R9', R9" и R9"', если эти заместители имеются у соответствующей группы Ar, независимо представляют собой водород или фтор.

В некоторых вариантах осуществления:

R2 означает галоген, C2-C4 алкенил или C1-C4 алкокси;

оба заместителя R3 и R4 являются атомами водорода;

X означает N, CH или CF;

Ar представляет собой Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11, Ar12, Ar15, Ar16, Ar25, Ar26, Ar27 или Ar28;

R5 означает водород или F;

R6 означает водород или F;

R6' означает водород;

R7, R7', R8, R8', R9, R9', R9" и R9"', если эти заместители имеются у соответствующей группы Ar, независимо представляют собой водород или фтор.

В некоторых вариантах осуществления:

R2 означает хлор, метокси, винил или 1-пропенил;

оба заместителя R3 и R4 являются атомами водорода; и

X означает N, CH или CF.

В некоторых вариантах осуществления:

R2 означает хлор;

R3 и R4 являются атомами водорода; и

X означает N, CH или CF.

В некоторых вариантах осуществления:

R2 означает метокси;

R3 и R4 являются атомами водорода; и

X означает N, CH или CF.

В некоторых вариантах осуществления:

R2 означает винил или 1-пропенил;

R3 и R4 являются атомами водорода; и

X означает N, CH или CF.

В некоторых вариантах осуществления:

R2 означает хлор, метокси, винил или 1-пропенил;

R3 и R4 являются атомами водорода; и

X означает N.

В некоторых вариантах осуществления:

R2 означает хлор;

R3 и R4 являются атомами водорода; и

X означает CH.

В некоторых вариантах осуществления:

R2 означает хлор, метокси, винил или 1-пропенил;

R3 и R4 являются атомами водорода; и

X означает CF.

Типовые примеры соединений

В приведенной ниже таблице 1 представлены примеры типовых соединений формулы (I), в которых

R1 представляет собой OR1';

R3 и R4 являются атомами водорода; и

R1', R2, X, Ar, m, R5, R6, R6', R6", R7 и R7', R8, R8' и R10 соответствуют одной из приведенных в таблице комбинаций:

Способы получения соединений

Ниже приведено описание стандартных методик синтеза соединений формулы (I).

4-амино-6-(гетероциклил)пиколиновые кислоты формулы (I) можно получать рядом способов. Как показано на схеме I, 4-амино-6-хлорпиколинаты формулы (II) можно превращать в 4-амино-6-замещенные пиколинаты формулы (III), где Ar соответствует данному в заявке определению, в результате реакции сочетания по Сузуки с бороновой кислотой или эфиром, в присутствии основания, например, фторида калия, и катализатора, например, дихлорида бис(трифенилфосфин)палладия (II) в смеси полярных протонных растворителей, например, ацетонитрил-вода, при температуре 110°C, например, в микроволновом реакторе (реакция a1). 4-амино-6-замещенные пиколинаты формулы (III) можно превратить в 5-йод-4-амино-6-замещенные пиколинаты формулы (IV) при реакции с йодирующими реагентами, например, перйодной кислотой и йодом, в полярном протонном растворителе, например, метиловом спирте (реакция b1). Реакция сочетания по Стилле 5-йод-4-амино-6-замещенных пиколинатов формулы (IV) со станнаном, например, тетраметилоловом, в присутствии катализатора, например, дихлорида бис(трифенилфосфин)палладия (II) в инертном растворителе, например, 1,2-дихлорэтане, при температуре примерно 120-130°C, например, в микроволновом реакторе, приводит к получению 5-(замещенного)-4-амино-6-замещенного пиколината формулы (I-A), где Z1 означает алкил, алкенил, алкинил, галогеналкил и алкилтио (реакция c1).

В качестве альтернативы, 4-амино-6-хлорпиколинаты формулы (II) можно превращать в 5-йод-4-амино-6-хлорпиколинаты формулы (V) взаимодействием с йодирующими реагентами, например, перйодной кислотой и йодом, в полярном протонном растворителе, таком как метиловый спирт (реакция b2). Реакция сочетания по Стилле 5-йод-4-амино-6-хлорпиколинатов формулы (V) со станнаном, например, тетраметилоловом, в присутствии катализатора, например, дихлорида бис(трифенилфосфин)палладия (II) в инертном растворителе, например, 1,2-дихлорэтане, при температуре примерно 120-130°C, например, в микроволновом реакторе, приводит к получению 5-(замещенного)-4-амино-6-хлорпиколината формулы (IV), где Z1 означает алкил, алкенил, алкинил, галогеналкил и алкилтио (реакция c2). 5-замещенные-4-амино-6-хлорпиколинаты формулы (VI) можно превратить в 5-замещенные-4-амино-6-замещенные пиколинаты формулы (I-A), где Ar соответствует определению, данному в тексте заявки, реакцией сочетания по Сузуки с бороновой кислотой или эфиром, в присутствии основания, например, фторида калия, и катализатора, например, дихлорида бис(трифенилфосфин)палладия (II), в смеси полярных протонных растворителей, например, ацетонитрил-вода, при температуре 110°C, например, в микроволновом реакторе (реакция a2).

Схема 1

Как показано на схеме II, 4,5,6-трихлорпиколинат формулы (VII) можно превратить в соответствующий изопропиловый эфир формулы (VIII) взаимодействием с изопропиловым спиртом и концентрированной серной кислотой, например, при температуре кипения в условиях Дина-Старка (реакция d). Изопропиловый эфир формулы (VIII) можно ввести во взаимодействие с источником фторид-иона, например, фторидом цезия, в полярном апротонном растворителе, например, диметилсульфоксиде (ДМСО) при температуре, например, 80°C в условиях Дина-Старка, с получением изопропил 4,5,6-трифторпиколината формулы (IX) (реакция e). Изопропил 4,5,6-трифторпиколинат формулы (IX) можно аминировать при взаимодействии с источником азота, таким как аммиак, в полярном апротонном растворителе, таком как ДМСО, с получением 4-амино-5,6-дифторпиколината формулы (X) (реакция f). Атом фтора в положении 6 4-амино-5,6-дифторпиколината формулы (X) можно заменить на атом хлора при обработке источником хлорид-иона, например, хлористым водородом, например, в диоксане в реакторе Парра, при температуре примерно 100°C с получением 4-амино-5-фтор-6-хлорпиколината формулы (XI) (реакция g). 4-амино-5-фтор-6-хлорпиколинат формулы (XI) можно переэтерифицировать с получением соответствующего метилового эфира формулы (XII) взаимодействием с изопропоксидом титана (IV) в метиловом спирте при температуре кипения (реакция h).

Схема II

Как показано на схеме III, 4-амино-5-фтор-6-хлорпиколинат формулы (XII) можно превратить в 3-йод-4-амино-5-фтор-6-хлорпиколинат формулы (XIII) взаимодействием с йодирующими реагентами, такими как перйодная кислота и йод, в полярном протонном растворителе, например, метиловом спирте (реакция b3). Реакция сочетания по Стилле 3-йод-4-амино-5-фтор-6-хлорпиколинатов формулы (XIII) со станнаном, например, трибутил(винил)станнаном, в присутствии катализатора, например, дихлорида бис(трифенилфосфин)палладия (II) в инертном растворителе, например, 1,2-дихлорэтане, при температуре примерно 120-130°C, например, в микроволновом реакторе, приводит к получению 3-(замещенного)-4-амино-5-фтор-6-хлорпиколината формулы (XIV), где R2 означает алкил, алкенил, алкинил, галогеналкил и алкилтио (реакция c3). В качестве альтернативы, 3-йод-4-амино-5-фтор-6-хлорпиколинаты формулы (XIII) можно обработать карбонатом цезия и каталитическим количеством йодида меди (I) и 1,10-фенантролина в присутствии полярного протонного растворителя, например, метилового спирта, при температуре, например, 65°C с получением 3-(замещенной)-4-амино-5-фтор-6-хлорпиколиновой кислоты формулы (XIV), где R2 представляет собой алкокси или галогеналкокси (реакция i1), которую можно этерифицировать с получением метилового эфира, например, обработкой хлористым водородом (газообразным) и метиловым спиртом при 50°C (реакция j1). 3-(замещенный)-4-амино-5-фтор-6-хлорпиколинат формулы (XIV) можно превратить в 4-амино-6-замещенный пиколинат формулы (I-B), где Ar соответствует определению в тексте заявки, реакцией сочетания по Сузуки с бороновой кислотой или эфиром, в присутствии основания, например, фторида калия, и катализатора, например, дихлорида бис(трифенилфосфин)палладия (II) в смеси полярных протонных растворителей, например, ацетонитрил-вода, при температуре 110°C, например, в микроволновом реакторе (реакция a3).

В качестве альтернативы 4-амино-5-фтор-6-хлорпиколинат формулы (XII) можно превратить в 4-амино-5-фтор-6-замещенный пиколинат формулы (XV), где Ar соответствует данному в заявке определению, реакцией сочетания по Сузуки с бороновой кислотой или эфиром, в присутствии основания, например, фторида калия, и катализатора, например, дихлорида бис(трифенилфосфин)палладия (II) в смеси полярных протонных растворителей, например, ацетонитрил-вода, при температуре 110°C, например, в микроволновом реакторе (реакция a4). 4-амино-5-фтор-6-замещенный пиколинат формулы (XV) можно превратить в 3-йод-4-амино-5-фтор-6-замещенный пиколинат формулы (XVI) взаимодействием с йодирующими агентами, например, перйодной кислотой и йодом, в полярном протонном растворителе, таком как метиловый спирт (реакция b4). Реакция сочетания по Стилле 3-йод-4-амино-5-фтор-6-замещенного пиколината формулы (XVI) со станнаном, например, трибутил(винил)станнаном, в присутствии катализатора, например, дихлорида бис(трифенилфосфин)палладия (II) в инертном растворителе, например, 1,2-дихлорэтане, при температуре примерно 120-130°C, например, в микроволновом реакторе, приводит к получению 3-(замещенного)-4-амино-5-фтор-6-замещенного пиколината формулы (I-B), где R2 означает алкил, алкенил, алкинил, галогеналкил и алкилтио (реакция c4). В качестве альтернативы, 3-йод-4-амино-5-фтор-6-замещенный пиколинат формулы (XVI) можно обработать карбонатом цезия и каталитическими количествами йодида меди(I) и 1,10-фенантролина в присутствии полярного протонного растворителя, например, метилового спирта, при температуре, например, 65°C с получением 3-(замещенной)-4-амино-5-фтор-6-замещенной пиколиновой кислоты формулы (I-B), где R2 означает алкокси или галогеналкокси (реакция i2), которая может быть этерифицирована с получением метилового эфира, например, обработкой хлористым водородом (газообразным) и метиловым спиртом при температуре, например, 50°C (реакция j2).

Схема III

Как показано на схеме IV, 4-ацетамидо-6-(триметилстаннил)пиколинат формулы (XVII) можно превратить в 4-ацетамидо-6-замещенный пиколинат формулы (XVIII), где Ar соответствует данному в тексте определению, реакцией сочетания по Стилле с арилбромидом или арилйодидом, в присутствии катализатора, например, дихлорида бис(трифенилфосфин)палладия (II) в растворителе, например, 1,2-дихлорэтане, например, при температуре кипения (реакция k). 4-амино-6-замещенный пиколинат формулы (I-C), где Ar соответствует данному в тексте определению, можно синтезировать из 4-ацетамидо-6-замещенного пиколината формулы (XVIII) стандартными способами снятия защиты, например, действием газообразного хлористого водорода в метаноле (реакция l).

Схема IV

Как показано на схеме V, 2,4-дихлор-5-метоксипиримидин (XIX) можно превратить в 2,4-дихлор-5-метокси-6-винилпиримидин (XX) взаимодействием с винилмагнийбромидом в полярном апротонном растворителе, например, тетрагидрофуране (реакция m). 2,4-дихлор-5-метокси-6-винилпиримидин (XX) можно превратить в 2,6-дихлор-5-метоксипиримидин-4-карбоксальдегид (XXI) обработкой озоном, например, в смеси растворителей дихлорметан:метанол (реакция n). 2,6-дихлор-5-метоксипиримидин-4-карбоксальдегид (XXI) можно превратить в метил 2,6-дихлор-5-метоксипиримидин-4-карбоксилат (XXII) обработкой бромом, например, в смеси растворителей метанол:вода (реакция o). Метил 2,6-дихлор-5-метоксипиримидин-4-карбоксилат (XXII) можно превратить в метил 6-амино-2-хлор-5-метоксипиримидин-4-карбоксилат (XXIII) обработкой аммиаком (например, 2 эквивалентами) в растворителе, например, ДМСО (реакция p). Наконец, 6-амино-2-замещенный-5-метоксипиримидин-4-карбоксилат формулы (I-D), где A соответствует данному в тексте определению, можно получать реакцией сочетания по Сузуки 6-амино-2-хлор-5-метоксипиримидин-4-карбоксилата (XXIII) с бороновой кислотой или эфиром, в присутствии основания, например, фторида калия, и катализатора, например, дихлорида бис(трифенилфосфин)палладия (II) в смеси полярных протонных растворителей, например, ацетонитрил-вода, при температуре 110°C, например, в микроволновом реакторе (реакция a5).

Схема V

Соединения формул I-A, I-B, I-C и I-D, полученные любым из описанных способов, можно выделить традиционными путями и очистить стандартными методиками, например, перекристаллизацией или хроматографией. Соединения формулы (I) можно получать из соединений формул I-A, I-B, I-C и I-D с помощью стандартных методик, хорошо известных из уровня техники.

Композиции и методики

В некоторых вариантах осуществления соединения по настоящему изобретению применяются в смесях, содержащих гербицидно-эффективное количество соединения, наряду с как минимум одним адъювантом или носителем, подходящим для применения в сельском хозяйстве. Типовые примеры адъювантов или носителей включают такие ингредиенты, которые являются не фитотоксичными или незначительно фитотоксичными для полезных растений, например, в концентрациях, применяемых при нанесении композиций для селективной борьбы с сорняками в присутствии культурных растений, и/или не взаимодействуют химически или незначительно взаимодействуют с соединениями по настоящему изобретению или другими ингредиентами композиции. Такие смеси могут быть предназначены для нанесения непосредственно на сорняки или место их произрастания, или же они могут являться концентратами или составами, которые требуют разбавления дополнительными носителями или адъювантами перед применением. Они могут являться твердыми препаратами, например, дустами, гранулами, диспергируемыми в воде гранулами или смачивающимися порошками, или же жидкостями, например, эмульгирующимися концентратами, растворами, эмульсиями или суспензиями. Композиции можно получать в виде готовых смесей или составов для получения баковых смесей.

Подходящие для с-х применения адъюванты и носители, которые годятся для получения гербицидных смесей по настоящему изобретению, хорошо известны специалистам в данной области техники. Некоторые из этих адъювантов включают, не ограничиваясь перечисленными, маслянистый концентрат (который мало поражает культурные растения и состоит из минерального масла (85%) и эмульгаторов (15%)); нонилфенола этоксилат; соли четвертичного бензилкокоалкилдиметил аммония; смесь нефтяных углеводов, алкиловых эфиров, органических кислот и анионных ПАВ; C9-C11 алкилполигликозиды; фосфатированные этоксилаты спиртов; этоксилаты природных первичных спиртов (C12-C16); блок-сополимеры ди-втор-бутилфенол EO-PO; полисилоксан с метильными группами на концах; нонилфенола этоксилат + нитрат аммония мочевины; эмульгированное метилированное масло из семян; этоксилат тридецилового спирта (синтетического) (8EO); этоксилат жирного амина (15EO); ПЭГ(400)диолеат-99.

Подходящие для применения жидкие носители включают воду и органические растворители. Обычно применяемые органические растворители включают, не ограничиваясь перечисленным, нефтяные фракции или углеводороды, например, минеральное масло, ароматические растворители, парафиновые масла и т.п.; растительные масла, например, соевое масло, рапсовое масло, оливковое масло, касторовое масло, подсолнечное масло, кокосовое масло, кукурузное масло, масло хлопчатника, льняное масло, пальмовое масло, масло арахиса, саффлоровое масло, кунжутное масло, тунговое масло и т.п.; сложные эфиры перечисленных выше растительных масел; сложные эфиры одноатомных спиртов или двухатомных, трехатомных или других низших полиспиртов (содержащих 4-6 гидроксигрупп), например, 2-этилгексилстеарат, н-бутилолеат, изопропил миристат, пропиленгликоля диолеат, диоктил сукцинат, дибутил адипат, диоктил фталат и т.п.; эфиры моно-, ди- и поли-карбоновых кислот и т.п. Конкретные органические растворители включают толуол, ксилол, нефтяной сольвент, маслянистый концентрат, ацетон, метилэтил кетон, циклогексанон, трихлорэтилен, перхлорэтилен, этилацетат, амилацетат, бутилацетат, монометиловый эфир пропиленгликоля и монометиловый эфир диэтиленгликоля, метиловый спирт, этиловый спирт, изопропиловый спирт, амиловый спирт, этиленгликоль, пропиленгликоль, глицерин, N-метил-2-пирролидинон, N,N-диметилалкиламиды, диметилсульфоксид, жидкие удобрения и т.п. В некоторых вариантах осуществления носителем для разбавления концентратов служит вода.

Подходящие твердые носители включают тальк, пирофиллитовую глину, оксид кремния, аттапульгитовую глину, каолиновую глину, кизельгур, мел, диатомовую землю, известь, карбонат кальция, бентонитовую глину, Фуллерову землю, шелуху семян хлопчатника, пшеничную муку, соевую муку, пемзу, древесную муку, муку из скорлупы грецкого ореха, лигнин и т.п.

В некоторых вариантах осуществления в композициях по настоящему изобретению применяются один или несколько поверхностно-активных агентов. Такие поверхностно-активные агенты в некоторых вариантах осуществления применяются как в твердых, так и в жидких композициях, например, предназначенных для разбавления носителем перед нанесением. Эти поверхностно-активные агенты могут иметь анионную, катионную или неионную природу и применяться в качестве эмульгирующих агентов, смачивающих агентов, суспендирующих агентов или с другими целями. ПАВ, которые традиционно применяются в технике получения с-х составов, и которые могут также применяться в составах по настоящему изобретению, описаны в том числе в McCutcheon's Detergents and Emulsifiers Annual, MC Publishing Corp., Ridgewood, New Jersey, 1998 и Encyclopedia of Surfactants, Vol. I-III, Chemical Publishing Co., New York, 1980-81. Типовые поверхностно-активные агенты включают соли алкилсульфатов, например, лаурилсульфат диэтаноламмония; алкиларилсульфонаты, например, додецилбензолсульфонат кальция; продукты присоединения алкиленоксида к алкилфенолам, например, нонилфенола-C18 этоксилат; продукты присоединения алкиленоксидов к спиртам, например, тридецилового спирта-C16этоксилат; мыла, например, стеарат натрия; соли алкилнафталин сульфоната, например, дибутилнафталинсульфонат натрия; диалкиловые эфиры сульфосукцинатов, например, ди(2-этилгексил)сульфосукцинат натрия; сложные эфиры сорбита, например, олеат сорбита; четвертичные аммониевые соли, например, хлорид лаурилтриметиламмония; сложные эфиры полиэтиленгликоля и жирных кислот, например, стеарат полиэтиленгликоля; блок-сополимеры этиленоксида и пропиленоксида; соли моно- и диалкилфосфатов; растительные масла или масла из семян, например, соевое масло, масло рапса/канолы, оливковое масло, касторовое масло, масло семян подсолнечника, кокосовое масло, кукурузное масло, масло семян хлопчатника, льняное масло, пальмовое масло, арахисовое масло, саффлоровое масло, кунжутное масло, тунговое масло и т.п.; а также сложные эфиры перечисленных растительных масел, например, метиловые эфиры.

Нередко некоторые из этих материалов, например, растительные масла и масла семян растений, и их сложные эфиры могут являться взаимозаменяемыми в качестве сельскохозяйственных адъювантов, играя роль жидких носителей или поверхностно-активных агентов.

Другие адъюванты, обычно применяемые в сельскохозяйственных композициях, включают агенты для улучшения совместимости, антивспенивающие агенты, комплексообразующие агенты, нейтрализующие агенты и буферы, ингибиторы коррозии, красители, отдушки, средства для усиления растекания, средства, способствующие проникновению, средство, способствующее прилипанию, диспергирующие агенты, загущающие агенты, средства, понижающие температуру замерзания, антимикробные агенты и т.п. Композиции по настоящему изобретению могут содержать другие совместимые компоненты, например, другие гербициды, регуляторы роста растений, фунгициды, инсектициды и т.п., и их можно включать в состав с жидкими удобрениями или твердыми частицами удобрений, играющих роль носителя, например, нитратом аммония, мочевиной и т.п.

Концентрация действующих ингредиентов в гербицидных композициях по настоящему изобретению, как правило, составляет от примерно 0,001 до примерно 98% масс. Часто применяются концентрации от примерно 0,01 до примерно 90% масс. В композициях, предназначенных для применения в качестве концентратов, действующий ингредиент обычно присутствует в концентрации от примерно 5 до примерно 98% масс., предпочтительно от примерно 10 до примерно 90% масс. Такие композиции перед применением обычно разбавляют инертным носителем, например, водой. Разбавленные композиции, которые обычно наносят на сорняки или место их произрастания, содержат от примерно 0,0001 до примерно 1% масс. действующего ингредиента и предпочтительно от примерно 0,001 до примерно 0,05% масс.

Композиции по настоящему изобретению могут наноситься на сорняки или место их произрастания с помощью традиционных наземных или воздушных опылителей, распылителей и аппликаторов гранул, путем добавления в поливную или паводковую воду или другими стандартными способами, известными специалисту в данной области техники.

В некоторых вариантах осуществления соединения и композиции, описанные в заявке, наносят после появления всходов, до появления всходов, подают вместе с водой на затопляемые рисовые чеки или в водоемы (например, пруды, озера и реки) или осуществляют контактное нанесение.

В некоторых вариантах осуществления соединения и композиции по настоящему изобретению применяют для борьбы с сорняками в культурных насаждениях, включая, но не ограничиваясь перечисленным, цитрусовые культуры, яблони, каучуконосы, масличные культуры, пальмы, лесные массивы, рис семенного посева, посева в воду и рассадной рис, пшеницу, ячмень, овес, рожь, сорго, кукурузу/маис, пастбища, луга, природные пастбища, залежные земли, дерн, сады и виноградники, водные растения или пропашные культуры, а также регулирования несельскохозяйственных насаждений, например, регулирования промышленной растительности (IVM) или участков, отведенных под дороги. В некоторых вариантах осуществления соединения и композиции по настоящему изобретению применяются для борьбы с древесными растениями, широколиственными и травянистыми сорняками или осокой.

В некоторых вариантах осуществления соединения и композиции по настоящему изобретению применяются для борьбы с нежелательной растительностью в насаждениях риса. В некоторых вариантах осуществления нежелательная растительность представляет собой Brachiaria Platyphylla (Groseb.) Nash (брахиарию плосколистную, BRAPP), Digitaria sanguinalis (L.) Scop. (росичку кроваво-красную, DIGSA), Echinochloa crus-galli (L.) P.Beauv. (ежовник обыкновенный, петушье просо, ECHCG), Echinochloa colonum (L.) LINK (ежовник крестьянский, ECHCO), Echinochloa oryzoides (Ard.) Fritsch (ежовник рисовидный, ECHOR), Echinochloa oryzicola (Vasinger) Vasinger (ежовник бородчатый, просянку рисовую, ECHPH), Ischaemum rugosum Salisb. (saramollagrass, ISCRU), Leptochloa Chinesis (L.) Nees (лептохлою китайскую, LEFCH), Leptochloa fascicularis (Lam.) Gray (лептохлою бородчатую, LEFFA), Leptochloa panicoides (Presl.) Hitchc. (лептохлою амазонскую, LEFPA), Panicum dichtomiflorum (L.) Michx (просо раздвоенноцветковое, PANDI), Paspalum dilatatum Poir. (паспалум расширенный, PASDI), Cyperus difformis L., (сыть разнородную, CYPDI), Cyperus esculentus L. (сыть съедобную, CYPES), Cyperus iria L. (сыть ирия, CYPIR), Cyperus rotundus L., (сыть круглую, CYPRO), виды Eleocharis (болотница, ELOSS), Fimbristylis miliacea (L.) Vahl (тростник бахромчатый, globe fringerush, FIMMI), Schoenoplectus junicoides Roxb. (японский камыш, SCPJU), Schoenoplectus maritimus L. (клубнекамыш морской, SCPMA), Schoenoplectus mucronatus L. (камыш остроконечный, SCPMU), виды Aeschynomene (эшиномена, AESSS), Alternanthera philoxeroides (Mart.) Griseb. (очереднопыльник филоксеровый, ALRPH), Alisma Plantago-aquatica L. (частуха подорожниковая, водный подорожник, ALSPA), виды Amaranthus (маревые и амаранты, AMASS), Ammannia coccinea Rottb. (амманию, redstem, AMMCO), Eclipta alba (L.) Hassk. (эклипту белую, ECLAL), Heteranthera limosa (SW.) Willd./Vahl (гетерантеру илистую, HETLI), Heteranthera reniformis R.& P. (гетерантеру почковидную, HETRE), Ipomoea hederacea (L.) Jacq. (ипомею плющевидную, IPOHE), Lindernia dubia (L.) Pennel (low false pimpernel, LIDDU), Monochoria korsakowii Regel & Maack (монохорию Корсакова, MOOKA), Monochoria vaginalis (Burm.F.) C.Presl ex Kuhth (монохорию влагалищную, MOOVA), Murdannia nudiflora (L.) Brenan (Мурданию nudiflora, doveweed, MUDNU), Polygonum pensylvanicum L. (горец пенсильванский, POLPY), Polygonum persicaria L. (горец почечуйный, POLPE), Polygonum hydropiperoides Michx. (горец перечный, POLHP), Rotala indica (Willd.) Koehne (роталу индийскую, ROTIN), виды Sagittaria (стрелолисты, SAGSS), Sesbania exaltata (Raf.) Cory/Rydb. Ex Hill (сесбанию рослую, SEBEX) или Sphenoclea zeylanica Gaertn. (сфеноклею цейлонскую, SPDZE).

В некоторых вариантах осуществления соединения и композиции по настоящему изобретению применяются для борьбы с нежелательной растительностью в зерновых культурах. В некоторых вариантах осуществления нежелательные растения представляют собой Alopecurus myosuroides Huds. (лисохвост мышехвостниковидный, ALOMY), Apera spica-venti (L.) Beauv.(метлицу обыкновенную, APESV), Avena fatua L. (Овес пустой или овсюг, AVEFA), Bromus tectorum L. (костер кровельный, BROTE), Lolium multiflorum Lam. (плевел многоцветковый, LOLMU), Phalaris minor Retz. (канареечник малый, PHAMI), Poa annua L. (мятлик однолетний, POAAN), Setaria pumila (Poir.) Roemer & J.A.Schultes (щетинник низкий, SETLU), Setaria viridis (L.) Beauv. (щетинник зеленый, SETVI), Cirsium arvense (L.) Scop. (бодяк полевой, CIRAR), Galium aparine L. (подмаренник цепкий, GALAP), Kochia scoparia (L.) Schrad. (кохию веничную, KCHSC), Lamium purpereum L. (яснотку пурпурную, LAMPU), Matricaria recutita L. (ромашку аптечную, MATCH), Matricaria matricarioides (Less.) Porter (ромашку пахучую, MATMT), Papaver rhoeas L. (мак самосейку, PAPRH), Polygonum convolvulus L. (горец вьюнковый, гречишку вьюнковую, POLCO), Salsola tragus L. (солянку сорную, SASKR), Stellaria media (L.) Vill. (звездчатку среднюю, STEME), Veronica persica Poir. (веронику персидскую, VERPE), Viola arvensis Murr. (фиалку полевую, VIOAR) или Viola tricolor L. (фиалку трехцветную, VIOTR).

В некоторых вариантах осуществления соединения и композиции по настоящему изобретению применяются для борьбы с нежелательной растительностью на выгонах и пастбищах. В некоторых вариантах осуществления нежелательная растительность представляет собой Ambrosia artemisiifolia L. (амброзию полыннолистную, AMBEL), Cassia obtusifolia (сенну туполистную, CASOB), Centaurea maculosa auct.non Lam. (василек пятнистый, CENMA), Cirsium arvense (L.) Scop. (бодяк полевой, CIRAR), Convolvulus arvensis L. (вьюнок полевой, CONAR), Euphorbia esula L. (молочай острый, EPHES), Lactuca serriola L./Torn (латук компасный, LACSE), Plantago lanceolata L. (подорожник ланцетолистный, PLALA), Rumex obtusifolius L. (щавель туполистный, RUMOB), Sida spinosa L. (сиду колючую, SIDSP), Sinapis arvensis L. (горчицу полевую, SINAR), Sonchus arvensis L. (осот полевой, SONAR), виды рода Solidago (золотарник, SOOSS), Taraxacum officinale G.H.Weber ex Wiggers (одуванчик лекарственный, TAROF), Trifolium repens L. (клевер ползучий, TRFRE) или Urtica dioica L. (крапиву двудомную, URTDI).

В некоторых вариантах осуществления соединения и композиции по настоящему изобретению применяются для борьбы с нежелательной растительностью в пропашных культурах. В некоторых вариантах осуществления эта нежелательная растительность представляет собой: Alopecurus myosuroides Huds. (лисохвост мышехвостниковидный, ALOMY), Avena fatua L. (Овес пустой или овсюг, AVEFA), Brachiaria Platyphylla (Groseb.) Nash (брахиарию плосколистную, BRAPP), Digitaria sanguinalis (L.) Scop. (росичку кроваво-красную, DIGSA), Echinochloa crus-galli (L.) P.Beauv. (ежовник обыкновенный, петушье просо, ECHCG), Echinochloa colonum (L.) LINK (ежовник крестьянский, ECHCO), Lolium multiflorum Lam. (плевел многоцветковый, LOLMU), Panicum dichtomiflorum (L.) Michx. (просо раздвоенноцветковое, PANDI), Panicum miliaceum L. (просо обыкновенное, PANMI), Setaria faberi Herrm. (щетинник Фабера, SETFA), Setaria viridis (L.) Beauv. (щетинник зеленый, SETVI), Sorghum Halepense (L.) Pers. (сорго алеппское, SORHA), Sorghum bicolor (L.) Moench ssp. (сорго зерновое), Arundinaceum (сорго обыкновенное, сорго травянистое, SORVU), Cyperus esculentus L. (сыть съедобную, CYPES), Cyperus rotundus L., (сыть круглую, CYPRO), Abutilon theophrasti Medik. (канатник Теофраста, ABUTH), виды Amaranthus (маревые и амаранты, AMASS), Ambrosia artemisiifolia L. (амброзию полыннолистную, AMBEL), Ambrosia psilostachya DC (амброзию голометельчатую, AMBPS), Ambrosia trifida L. (амброзию трехраздельную, AMBTR), Asclepias syriaca L. (Ваточник сирийский, эскулапову траву, молочную траву, ASCSY), Chenopodium album L. (марь белую, CHEAL), Cirsium arvense (L.) Scop (бодяк полевой, CIRAR), Commelina benghalensis L. (коммелину бенгальскую, COMBE), Datura stramonium L. (дурман обыкновенный, DATST), Daucus carota L. (морковь дикую, DAUCA), Euphorbia heterophylla L. (молочай разнолистный, EPHHL), Erigeron bonariensis L. (мелколепестник буэносайресский, ERIBO), Erigeron canadensis L. (мелколепестник канадский, ERICA), Helianthus annuus L. (подсолнечник однолетний, HELAN), Jacquemontia tamnifolia (L.) Griseb. (жакимонтию тамнифолию, IAQTA), Ipomoea hederacea (L.) Jacq. (ипомею hederacea, IPOHE), Ipomoea lacunosa L. (ипомею lacunosa, IPOLA), Lactuca serriola L./Torn. (латук компасный, LACSE), Portulaca oleracea L. (портулак огородный, POROL), Sida spinosa L. (сиду колючую, SIDSP), Sinapis arvensis L. (горчицу полевую, SINAR), Solanum ptychanthum Dunal (восточный черный паслен, SOLPT) или Xanthium strumarium L. (дурнишник обыкновенный, XANST).

В некоторых вариантах осуществления при послевсходовой обработке сорняков, норма расхода соединения по настоящему изобретению составляет от примерно 1 до примерно 4000 граммов/гектар. В некоторых вариантах осуществления норма расхода от примерно 1 до примерно 4000 граммов/га применяется при предвсходовой обработке сорняков.

В некоторых вариантах осуществления соединения, композиции и способы по настоящему изобретению применяются в сочетании с одним или несколькими другими гербицидами для борьбы с более широким спектром нежелательной растительности. При применении в сочетании с другими гербицидами, соединения по настоящей заявке можно включать в один состав с другим гербицидом или гербицидами, получать баковую смесь с другим гербицидом или гербицидами или наносить последовательно с другим гербицидом или гербицидами. Некоторые из гербицидов, которые могут применяться в сочетании с соединениями по настоящему изобретению, включают: 4-CPA, 4-CPB, 4-CPP, 2,4-D, соль 2,4-D и холина, сложные эфиры и амины 2,4-D, 2,4-DB, 3,4-DA, 3,4-DB, 2,4-DEB, 2,4-DEP, 3,4-DP, 2,3,6-TBA, 2,4,5-T, 2,4,5-TB, ацетохлор, ацифлурофен, аклонифен, акролеин, алахлор, аллидохлор, аллоксидим, аллиловый спирт, алорак, аметридион, аметрин, амибузин, амикарбазон, амидосульфурон, аминоциклопирахлор, аминопиралид, амипрофос-метил, амитрол, сульфамат аммония, анилофос, анисурон, асулам, атратон, атразин, азафенидин, азимсульфурон, азипротрин, барбан, BCPC, бефлубутамид, бензазолин, бенкарбазон, бенфлуралин, бенфуресат, бенсульфурон-метил, бенсулид, бентиокарб, бентазон-натрий, бензадокс, бензфендизон, бензипрам, бензобициклон, бензофенап, бензофлуор, бензоилпроп, бензтиазурон, бициклопирон, бифенокс, биланафос, биспирибак-натрий, боракс, бромацил, бромобонил, бромобутид, бромофеноксим, бромоксинил, бромпиразон, бутахлор, бутафенацил, бутамифос, бутенахлор, бутидазол, бутиурон, бутралин, бутроксидим, бутурон, бутилат, какодиловую кислоту, кафенстрол, хлорат кальция, цианамид кальция, камбендихлор, карбасулам, карбетамид, карбоксазол, хлорпрокарб, кафентразон-этил, CDEA, CEPC, клометоксифен, хлорамбен, хлоранокрил, хлоразифоп, хлоразин, хлорбромурон, хлорбуфам, хлоретурон, хлорфенак, хлорфенпроп, хлорфлуразол, хлорфлуренол, хлоридазон, хлоримурон, хлорнитрофен, хлоропон, хлоротолурон, хлороксурон, хлороксинил, хлорпрофам, хлорсульфурон, хлортал, хлортиамид, цинидон-этил, цинметилин, циносульфурон, цисанилид, клетодим, клиодинат, клодинафоп-пропаргил, клофоп, кломазон, кломепроп, клопроп, клопроксидим, клопиралид, клорансулам-метил, CMA, сульфат меди, CPMF, CPPC, кредазин, крезол, кумилурон, цианатрин, цианазин, циклоат, циклосульфамурон, циклоксидим, циклурон, цигалофоп-бутил, циперкват, ципразин, ципразол, ципромид, диамурон, далапон, дазомет, делахлор, десмедифам, десметрин, диаллат, дикамбу, диклобенил, дихлоральмочевину, дихлормат, дихлорпроп, дихлорпроп-P, диклофоп, диклозулам, диэтамкват, диэтатил, дифенопентен, дифеноксурон, дифензокват, дифлуфеникан, дифлуфензопир, димефурон, димепиперат, диметахлор, диметаметрин, диметенамид, диметенамид-P, димексано, димидазон, динитрамин, динофенат, динопроп, диносам, диносеб, динотерб, дифенамид, дипропетрин, дикват, дисул, дитиопир, диурон, DMPA, DNOC, DSMA, EBEP, эглиназин, эндотал, эпроназ, EPTC, эрбон, эспрокарб, эталфлуралин, этбензамид, этаметсульфурон, этидимурон, этиолат, этобензамид, этобензамид, этофумезат, этоксифен, этоксисульфурон, этинофен, этнипромид, этобензанид, EXD, фенасулам, фенопроп, феноксапроп, феноксапроп-P-этил, феноксапроп-P-этил+изоксадифен-этил, феноксасульфон, фентеракол, фентиапроп, фентразамид, фенурон, сульфат железа (II), флампроп, флампроп-M, флазасульфурон, флорасулам, флуазифоп, флуазифоп-P-бутил, флуазолат, флукарбазон, флуцетосульфурон, флухлоралин, флуфенацет, флуфеникан, флуфенпир-этил, флуметсулам, флумезин, флумиклорак-пентил, флумиоксазин, флумипропин, флуометурон, фтородифен, фторогликофен, фторомидин, фторонитрофен, флуотиурон, флупоксам, флупропацил, флупропанат, флупирсульфурон, флуридон, флурохлоридон, флуроксипир, флуртамон, флутиацет, фомесафен, форамсульфурон, фосамин, фурилоксифен, глуфосинат, глуфосинат-аммоний, глифосат, галосафен, галосульфурон-метил, галоксидин, галоксифоп-метил, галоскифоп-P-метил, галауксифен-метил, гексахлорацетон, гексафлурат, гексазинон, имазаметабенз, имазамокс, имазапик, имазапир, имазаквин, имазетапир, имазосульфурон, инданофан, индазифлам, йодобонил, йодметан, йодсульфурон, иофенсульфурон, иоксинил, ипазин, ипфенкарбазон, ипримидам, изокарбамид, изоцил, изометиозин, изонорурон, изополинат, изопропалин, изопротурон, изоурон, изоксабен, изоксахлортол, изоксафлутол, изоксапирифоп, карбутилат, кетоспирадокс, лактофен, ленацил, линурон, MAA, MAMA, MCPA, сложные эфиры и амины, MCPA-тиоэтил, MCPB, мекопроп, мекопроп-P, мединотерб, мефенацет, мефлуидид, мезопразин, мезосульфурон, мезотрион, метам, метамифоп, метамитрон, метазахлор, метазосульфурон, метфлуразон, метабензтиазурон, металпропалин, метазол, метиобенкарб, метиозолин, метиурон, метометон, метопротрин, метил бромид, метил изоцианат, метилдимрон, метобензурон, метобромурон, метолахлор, метосулам, метоксурон, метрибузин, метсульфурон, молинат, моналид, монизоурон, монохлоруксусную кислоту, монолинурон, монурон, морфамкват, MSMA, напроанилид, напропамид, напропамид-M, напталам, небурон, никосульфурон, нипираклофен, нитралин, нитрофен, нитрофторфен, норфлуразон, норурон, OCH, орбенкарб, орто-дихлорбензол, ортосульфамурон, оризалин, оксадиаргил, оксадиазон, оксапиразон, оксасульфурон, оксазикломефон, оксифлуорфен, парафлуфен-этил, парафлурон, паракват, пебулат, пеларгоновую кислоту, пендиметалин, пеноксулам, пентахлорфенол, пентанохлор, пентоксазон, перфлуидон, петоксамид, фенизофам, фенмедифам, фенмедифам-этил, фенобензурон, ацетат фенилртути, пиклорам, пиколинафен, пиноксаден, пиперофос, арсенит калия, азид калия, цианат калия, претилахлор, примисульфурон-метил, проциазин, продиамин, профлуазол, профлуралин, профоксидим, проглиназин, прогексадион-кальций, прометон, прометрин, пропахлор, пропанил, пропаквизафоп, пропазин, профам, пропизохлор, пропоксикарбазон, пропирисульфурон, пропизамид, просульфалин, просульфокарб, просульфурон, проксан, принахлор, пиданон, пираклонил, пирафлуфен, пирасульфотол, пиразогил, пиразолинат, пиразосульфурон-этил, пиразоксифен, пирибензоксим, пирибутикарб, пириклор, пиридафол, пиридат, пирифталид, пириминобак, пиримисульфан, пиритиобак-метил, пироксасульфон, пироксулам, квинклорак, квинмерак, квинокламин, хинонамид, квизалофоп, квизалофоп-P-этил, родентанил, римсульфурон, сафлуфенацил, S-метолахлор, себутилазин, секбуметон, сетоксидим, сидурон, симазин, симетон, симетрин, SMA, арсенит натрия, азид натрия, хлорат натрия, сулькотрион, сульфаллат, сульфентразон, сульфометурон, сульфосат, сульфосульфурон, серную кислоту, сулгликапин, свип, TCA, тебутам, тебутиурон, тефурилтрион, темботрион, тепралоксидим, тербацил, тербукарб, тербухлор, тербуметон, тербутилазин, тербутрин, тетрафлурон, тенилхлор, тиазафлурон, тиазопир, тидиазимин, тидиазурон, тиенкарбазон-метил, тифенсульфурон, тиобенкарб, тиокарбазил, тиоклорим, топрамезон, тралкоксидим, триафамон, три-аллат, триасульфурон, триазифлам, трибенурон, трикамбу, сложные эфиры и амины триклопира, тридифан, триэтазин, трифлоксисульфурон, трифлуралин, трифлусульфурон, трифоп, трифопсим, тригидрокситриазин, триметурон, трипропиндан, тритак, тритосульфурон, вернолат и ксилахлор.

Соединения и композиции по настоящему изобретению для улучшения их селективности обычно могут применяться в комбинации с известными веществами, предохраняющими полезные растения от действия пестицидов, такими как беноксакор, бентиокарб, брассинолид, клоквинтоцет (например, мексил), циометринил, диамурон, дихлормид, дициклонон, димепиперат, дисульфотон, фенхлоразол-этил, фенхлорим, фуразол, флуксофеним, фурилазол, белки харпины, изоксадифен-этил, мефенпир-диэтил, MG 191, MON 4660, нафтойный ангидрид (NA), оксабетринил, R29148 и амиды N-фенилсульфобензойной кислоты.

Соединения, композиции и способы по настоящему изобретению, могут применяться для борьбы с нежелательной растительностью на глифосат-устойчивых, глуфосинат-устойчивых, дикамба-устойчивых, фенокси ауксин-устойчивых, пиридилокси ауксин-устойчивых, арилоксифеноксипропионат-устойчивых, ацетил CoA карбоксилазы (ACCазы) ингибитор-устойчивых, имидазолинон-устойчивых, ацетолактон синтазы (ALS) ингибитор-устойчивых, 4-гидроксифенил-пируват диоксигеназы (HPPD) ингибитор-устойчивых, протопорфириноген оксидазы (PPO) ингибитор-устойчивых, триазин-устойчивых и бромоксинил-устойчивых культурах (например, но не ограничиваясь перечисленными, сое, хлопчатнике, каноле/масличном рапсе, рисе, злаках, кукурузе, дерне и т.д.), например, в сочетании с глифосатом, глуфосинатом, дикамбой, фенокси ауксинами, пиридилокси ауксинами, арилоксифеноксипропионатами, ингибиторами ACCазы, имидазолинонами, ингибиторами ALS, ингибиторами HPPD, ингибиторами PPO, триазинами и бромоксинилом. Композиции и способы по настоящему изобретению могут применяться при борьбе с нежелательной растительностью среди культурных растений, обладающих множественными или комплексными характеристиками, придающими устойчивость ко многим химическим препаратам и/или ингибиторам с комбинированным механизмом действия.

Соединения и композиции по настоящему изобретению могут также применяться для борьбы с устойчивыми или невосприимчивыми к гербицидам сорняками. Типовые примеры устойчивых или невосприимчивых к гербицидам сорняков включают, не ограничиваясь перечисленными, биотипы, устойчивые или невосприимчивые к ингибиторам ацетолактат синтазы (ALS), ингибиторам фотосистемы II, ингибиторам ацетил CoA карбоксилазы (ACCазы), синтетическим ауксинам, ингибиторам фотосистемы I, ингибиторам 5-енолпирувилшикимат-3-фосфат синтазы (EPSP), ингибиторам сборки микротрубочек, ингибиторам синтеза липидов, ингибиторам протопорфириноген оксидазы (PPO), ингибиторам биосинтеза каротиноидов, ингибиторам жирных кислот с очень длинной цепью (VLCFA), ингибиторам фитоен десатуразы (PDS), ингибиторам глутамин синтетазы, ингибиторам 4-гидроксифенил-пируват-диоксигеназы (HPPD), ингибиторам митоза, ингибиторам биосинтеза целлюлозы, гербицидам с комбинированным механизмом действия, таким как квинклорак и гербицидам различных классов, таким как ариламинопропионовые кислоты, дифензокват, эндоталл и мышьякорганические соединения. Типовые примеры устойчивых или невосприимчивых сорняков включают, не ограничиваясь указанными, биотипы, обладающие устойчивостью или невосприимчивостью к нескольким гербицидам, химическим веществам нескольких классов и гербицидам с комбинированным механизмом действия.

Описанные варианты осуществления и следующие далее по тексту примеры приведены с иллюстративными целями и не предназначены для ограничения объема формулы изобретения. Другие модификации, применения или комбинации, относящиеся к композициям, описанным в настоящей заявке, которые не отступают от сути и не выходят за пределы объема заявленного предмета изобретения, должны быть ясны рядовому специалисту в данной области техники.

Синтез исходных соединений

Методика синтеза 1: метил 4-амино-3,6-дихлорпиколинат (Head A)

Соединение получали, как описано в заявке Fields et al., WO 2001051468 A1

Методика синтеза 2: метил 4-амино-3,6-дихлор-5-фторпиколинат (Head B)

Соединение получали, как описано в Fields et al., Tetrahedron Letters 2010, 51, 79-81

Методика синтеза 3: 2,6-дихлор-5-метокси-4-винил пиримидин

К раствору коммерчески доступного 2,6-дихлор-5-метокси пиримидина (100 граммов (г), 0,55 молей (моль)) в тетрагидрофуране по каплям добавляли 1 молярный (М) раствор винилмагнийбромида в тетрагидрофуране (124 г, 0,94 моль) в течение одного часа (ч) при комнатной температуре. Затем смесь перемешивали в течение 4 ч при комнатной температуре. Избыток реактива Гриньяра гасили добавлением ацетона (200 миллилитров (мл)), поддерживая температуру смеси ниже 20°C. Затем одной порцией добавляли 2,3-дихлор-5,6-дициано-п-бензохинон (DDQ, 151 г, 0,67 моль) и перемешивали в течение ночи. Наблюдалось выпадение твердого осадка желтого цвета. Твердый осадок отделяли фильтрованием и промывали этилацетатом (500 мл). Фильтрат концентрировали при пониженном давлении и полученное неочищенное соединение разбавляли этилацетатом (2 литра (л)). Полученное нерастворимое, темное, полутвердое вещество отделяли фильтрованием, используя этилацетат. Затем полученный продукт концентрировали при пониженном давлении, получали неочищенное соединение, которое очищали колоночной хроматографией. Соединение элюировали 5%-10% этилацетатом в гексане, получая указанное в заголовке соединение (70 г, 60%): т.пл. 60-61°C;1H ЯМР (CDCl3) δ: 3,99 (с, 3H), 5,85 (д, 1H), 6,75 (д, 1H), 6,95 (дд, 1H).

Методика синтеза 4: 2,6-дихлор-5-метоксипиримидин-4-карбальдегид

Раствор 2,6-дихлор-5-метокси-4-винил пиримидина (50 г, 0,24 моль) в смеси дихлорметан:метанол (4:1, 2 л) охлаждали до -78°C. Через полученный раствор пропускали газообразный озон в течение 5 ч. Реакционную смесь гасили диметилсульфидом (50 мл). Температуру смеси медленно повышали до комнатной и концентрировали при пониженном давлении при 40°C, получая указанное в заголовке соединение (50,5 г, 100%); высокоэффективная жидкостная хроматография (ВЭЖХ; 85% ацетонитрил буферированный 0,1 объемн.% (объем/объем) уксусной кислоты).

Методика синтеза 5: метил 2,6-дихлор-5-метоксипиримидин-4-карбоксилат

Готовили раствор 2,6-дихлор-5-метоксипиримидин-4-карбальдегида (50 г, 0,24 моль) в метаноле (1 л) и воде (60 мл). К этому раствору добавляли бикарбонат натрия (400 г). К полученному раствору пиримидина по каплям в течение 45 минут (мин) при 0°C и при перемешивании смеси добавляли 2М раствор брома (192 г, 1,2 моль) в смеси метанол/вода (600 мл, 9:1). Перемешивание при той же температуре продолжали в течение 1 ч. Затем смесь перемешивали при комнатной температуре в течение 4 ч. Затем реакционную смесь при перемешивании выливали на смесь толченого льда (2 л), бисульфита натрия (50 г) и хлорида натрия (NaCl, 200 г). Продукт экстрагировали этилацетатом (1 л × 2) и объединенные органические слои высушивали над сульфатом натрия и фильтровали. Выпаривание растворителя при пониженном давлении позволило получить густое вещество, которое затвердело при длительном стоянии, образовав указанное в заголовке соединение (50,8 г, 87%); ESI МС m/z 238 ([M+H]+).

Методика синтеза 6: метил 6-амино-2-хлор-5-метоксипиримидин-4-карбоксилат (Head C)

Готовили раствор метил 2,6-дихлор-5-метоксипиримидин-4-карбоксилата (25 г, 0,1 моль) в диметилсульфоксиде (ДМСО). К этому раствору при 0-5°C добавляли раствор аммиака (2 экв.) в ДМСО. Полученную смесь перемешивали при той же температуре (0-5°C) в течение 10-15 мин. Затем смесь разбавляли этилацетатом и полученное твердое вещество отделяли фильтрованием. Полученный этилацетатный фильтрат промывали насыщенным раствором соли и высушивали над сульфатом натрия. После концентрирования получали неочищенный продукт. Этот продукт перемешивали в минимальном количестве этилацетата и фильтровали, получая чистое соединение. Дополнительную порцию чистого соединения получали из фильтрата, который после концентрирования очищали флэш-хроматографией. Таким образом получали указанное в заголовке соединение (11 г, 50%): т.пл. 158°C;1H ЯМР (ДМСО-d6) δ: 3,71 (с, 3H), 3,86 (с, 3H), 7,65 (уш.с, 1H), 8,01 (уш.с, 1H).

Методика синтеза 7: метил 4-амино-3,6-дихлор-5-йодпиколинат

Метил 4-амино-3,6-дихлорпиколинат (10,0 г, 45,2 миллимоля (ммоль)), перйодную кислоту (3,93 г, 17,2 ммоль) и йод (11,44 г, 45,1 ммоль) растворяли в метаноле (30 мл) и перемешивали при кипячении с обратным холодильником при 60°C в течение 27 ч. Реакционную смесь концентрировали, разбавляли диэтиловым эфиром и дважды промывали насыщенным водным раствором бисульфита натрия. Водные слои один раз экстрагировали диэтиловым эфиром и объединенные органические слои высушивали над безводным сульфатом натрия. Продукт концентрировали и очищали флэш-хроматографией (силикагель, 0-50% этилацетат/гексан), получая указанное в заголовке соединение в виде бледно-желтого твердого вещества (12,44 г, 79%): т.пл. 130,0-131,5°C;1H ЯМР (400 МГц, CDCl3) δ 5,56 (с, 2H), 3,97 (с, 3H);13C ЯМР (101 МГц, CDCl3) δ 163,80, 153,00, 152,75, 145,63, 112,12, 83,91, 53,21; EI МС m/z 346.

Методика синтеза 8: метил 4-амино-3,6-дихлор-5-метилпиколинат (Head D)

Смесь метил 4-амино-3,6-дихлор-5-йодпиколината (8,1 г, 23,4 ммоль), тетраметилстаннана (8,35 г, 46,7 ммоль) и хлорида бис(трифенилфосфин)палладия(II) (2,5 г, 3,5 ммоль) в 1,2-дихлорэтане (40 мл) подвергали действию микроволнового излучения в устройстве Biotage Initiator при 120°C в течение 30 мин, осуществляя мониторинг температуры боковой части сосуда с помощью внешнего инфракрасного (ИК)-сенсора. Реакционную смесь непосредственно вводили в картридж с силикагелем и очищали флэш-хроматографией (силикагель, 0-50% этилацетат/гексан), получая указанное в заголовке соединение в виде оранжевого твердого вещества (4,53 г, 83%); т.пл. 133-136°C;1H ЯМР (400 МГц, CDCl3) δ 4,92 (с, 2H), 3,96 (с, 3H), 2,29 (с, 3H);13C ЯМР (101 МГц, CDCl3) δ 164,34, 150,24, 148,69, 143,94, 117,01, 114,60, 53,02, 14,40; EI МС m/z 236 ([M+H]+), 234 ([M-H]-).

Методика синтеза 9: метил 6-амино-2,5-дихлорпиримидин-4-карбоксилат (Head E)

Соединение получали, как описано в Epp et al., WO 2007082076 A1

Методика синтеза 10: метил 4-амино-6-хлор-5-фтор-3-метоксипиколинат (Head F)

Соединение получали, как описано в Epp et al., WO 2013003740 A1

Методика синтеза 11: метил 4-амино-6-хлор-5-фтор-4-винилпиколинат (Head G)

Метил 4-амино-6-хлор-5-фтор-3-йодпиколинат (7,05 г, 21,33 ммоль, полученный, как описано в Epp et al., WO 2013003740 A1) и винилтри-н-бутилолово (7,52 мл, 25,6 ммоль) суспендировали в 1,2-дихлорэтане (71,1 мл) и полученную смесь дегазировали аргоном в течение 10 мин. Затем добавляли хлорид бис(трифенилфосфин)палладия (II) (1,497 г, 2,133 ммоль) и реакционную смесь перемешивали при 70°C в течение ночи (прозрачный оранжевый раствор). За ходом реакции следили с помощью газовой хроматографии-масс-спектрометрии (ГХ-МС). Через 20 часов реакционную смесь концентрировали, адсорбировали на целит и очищали колоночной хроматографией (SiO2; градиент гексан/этилацетат), получая указанное в заголовке соединение в виде светло-коричневого твердого вещества (3,23 г, 65,7%): т.пл. 99-100°C;1H ЯМР (400 МГц, CDCl3) δ 6,87 (дд, J=18,1, 11,6 Гц, 1H), 5,72 (дд, J=11,5, 1,3 Гц, 1H), 5,52 (дд, J=18,2, 1,3 Гц, 1H), 4,79 (с, 2H), 3,91 (с, 3H);19F ЯМР (376 МГц, CDCl3) δ -138,79 (с); EI МС m/z 230.

Методика синтеза 12: метил 4-амино-3,5,6-трихлорпиколинат (Head H)

Соединение получали, как описано в заявке Finkelstein et al., WO 2006062979 A1.

Методика синтеза 13: метил 4-амино-6-бром-3-хлор-5-фторпиколинат (Head I)

Соединение получали, как описано в Arndt et al., US 20120190857 A1.

Методика синтеза 14: метил 4-амино-3-хлор-5-фтор-6-(триметилстаннил)пиколинат (Head J)

Метил 4-амино-6-бром-3-хлор-5-фторпиколинат (500 мг, 1,8 ммоль), 1,1,1,2,2,2-гексаметилдистаннан (580 мг, 1,8 ммоль) и хлорид бис(трифенилфосфин)палладия (II) (120 мг, 0,18 ммоль) смешивали в сухом диоксане (6 мл), продували потоком азота в течение 10 мин и затем нагревали до 80°C в течение 2 ч. Охлажденную смесь перемешивали с этилацетатом (25 мл) и насыщенным NaCl (25 мл) в течение 15 мин. Органическую фазу отделяли, фильтровали через диатомовую землю, высушивали (Na2SO4) и упаривали. Остаток смешивали с этилацетатом (4 мл), перемешивали и порциями обрабатывали гексаном (15 мл). Молочно-белый раствор декантировали с образовавшегося твердого вещества, фильтровали через стеклянное волокно и упаривали, получая указанное в заголовке соединение в виде не совсем белого твердого вещества (660 мг, 100%):1H ЯМР (400 МГц, CDCl3) δ 4,63 (д, J=29,1 Гц, 1H), 3,97 (с, 2H), 0,39 (с, 4H);19F ЯМР (376 МГц, CDCl3) δ -130,28; EI МС m/z 366.

Методика синтеза 15: метил 4-ацетамидо-3-хлор-6-(триметилстаннил)пиколинат (Head K)

Соединение получали, как описано в заявке Balko et al., WO 2003011852 A1.

Методика синтеза 16: метил 4-ацетамидо-3,6-дихлорпиколинат (Head L)

Соединение получали, как описано в заявке Fields et al., WO 2001051468 A1.

Методика синтеза 17: метил 4-амино-3-хлор-6-йодпиколинат (Head M)

Соединение получали, как описано в заявке Balko et al., WO 2007082098 A2.

Методика синтеза 18: метил 4-ацетамидо-3-хлор-6-йодпиколинат (Head N)

Соединение получали, как описано в заявке Balko et al., WO 2007082098 A2.

Методика синтеза 19: метил 4-амино-6-бром-3,5-дифторпиколинат (Head O)

Соединение получали, как описано в заявке Fields et al., WO 2001051468 A1.

Методика синтеза 20: метил 6-амино-2-хлор-5-винилпиримидин-4-карбоксилат (Head P)

Соединение получали, как описано в заявке Epp et al., US 20090088322.

Методика синтеза 21: 2,2,5-трифтор-6-йодбензо[d][1,3]диоксол

2,2,6-трифторбензо[d][1,3]диоксол-5-амин (8,0 г, 42 ммоль) добавляли к концентрированной хлористоводородной кислоте (конц. HCl; 200 мл), охлаждали до 5°C, энергично перемешивали и добавляли по каплям раствор нитрита натрия (4,3 г, 63 ммоль) в воде (10 мл) в течение 10 мин. Перемешивание продолжали при 5-10°C в течение 30 мин и смесь осторожно выливали в раствор йодида натрия (19 г, 130 ммоль) в воде (200 мл), после чего быстро перемешивали с дихлорметаном (100 мл). Через 20 мин смесь обрабатывали 10% раствором бисульфита натрия (NaHSO3; 20 мл) и перемешивали в течение еще 20 мин. Фазы разделяли и водную фазу экстрагировали дихлорметаном (75 мл). Объединенные органические фазы промывали насыщенным раствором NaCl (30 мл), высушивали (Na2SO4) и упаривали. Остаток очищали хроматографией на оксиде кремния, элюируя гексаном, и получали указанное в заголовке соединение в виде прозрачной жидкости (6 г, 51%):1H ЯМР (400 МГц, CDCl3) δ 7,41 (д, J=5,0 Гц, 1H), 6,90 (д, J=6,6 Гц, 1H);19F ЯМР (376 МГц, CDCl3) δ -49,63 (с), -95,24 (с); EI МС m/z 302.

Методика синтеза 22: 4,4,5,5-тетраметил-2-(2,2,6-трифторбензо[d][1,3]диоксол-5-ил)-1,3,2-диоксаборолан

2,2,5-трифтор-6-йодбензо[d][1,3]диоксол (1,0 г, 3,3 ммоль) растворяли в сухом тетрагидрофуране (10 мл), охлаждали до 5°C и обрабатывали раствором комплекса изопропилмагнийхлорид-хлорид лития (1,3М; 2,7 мл, 3,5 ммоль). Смесь перемешивали в течение 1 ч при 5-15°C, обрабатывали 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксабороланом (720 мкл, 660 мг, 3,5 ммоль) и перемешивали в течение 20 мин. Реакционную смесь гасили добавлением насыщенного раствора хлорида аммония (NH4Cl; 5 мл) и смешивали с этилацетатом (20 мл) и насыщенным раствором NaCl (10 мл). Отделенные органические фазы промывали насыщенным раствором NaCl (10 мл), высушивали (Na2SO4) и упаривали, получая указанное в заголовке соединение в виде твердого белого вещества (1,0 г, 100%):1H ЯМР (400 МГц, CDCl3) δ 7,37 (д, J=4,3 Гц, 1H), 6,81 (д, J=7,7 Гц, 1H), 1,35 (с, 12H);19F ЯМР (376 МГц, CDCl3) δ -49,96 (с), -104,21 (с) ); EI МС m/z 302.

Методика синтеза 23: 2,2,5-трифтор-4-йодбензо[d][1,3]диоксол

Втор-бутиллитий (1,4М в циклогексане; 6,1 мл, 8,5 ммоль) добавляли к сухому тетрагидрофурану (15 мл), предварительно охлажденному до -40°C. Раствор охлаждали до -75°C, обрабатывали 2,2,5-трифторбензо[d][1,3]диоксолом (1,5 г, 8,5 ммоль) и перемешивали при этой температуре в течение 90 мин. Полученный раствор быстро переносили по трубке в перемешиваемый раствор йода (2,8 г, 11 ммоль) в тетрагидрофуране (25 мл) и охлаждали смесь до -75°C. Смесь перемешивали в течение 1 ч, причем за это время температура повышалась до -20°C. Реакционную смесь гасили добавлением насыщенного раствора NH4Cl (10 мл) и затем смешивали с 10% NaHSO3 (15 мл) и этилацетатом (30 мл). Органическую фазу промывали насыщенным раствором NaCl (10 мл), высушивали (Na2SO4) и упаривали. Полученное вещество очищали флэш-хроматографией, элюируя гексаном и получая указанное в заголовке соединение в виде прозрачной жидкости (1,5 г, 58%):1H ЯМР (400 МГц, CDCl3) δ 6,97 (дд, J=8,8, 4,0 Гц, 1H), 6,81 (дд, J=11,7, 5,4 Гц, 1H);19F ЯМР (376 МГц, CDCl3) δ -49,06, -103,15; EI МС m/z 302.

Методика синтеза 24: 5-бром-4-хлор-2,2-дифторбензо[d][1,3]диоксол

2,2,6,6-тетраметилпиперидин (2,1 мл, 1,8 г, 12 ммоль) растворяли в сухом тетрагидрофуране (15 мл), охлаждали до -75°C, обрабатывали н-бутиллитием (н-BuLi, 2,5М; 4,8 мл, 12 ммоль) и перемешивали смесь в течение 30 мин при -75°C. Добавляли 5-бром-2,2-дифторбензо[d][1,3]диоксол (2,0 г, 8,4 ммоль) и перемешивали смесь в течение 2 ч при -75°C. Добавляли 1,1,2-трихлор-1,2,2-трифторэтан (2,4 мл, 3,8 г, 20 ммоль) и продолжали перемешивание в течение 1,5 ч. Добавляли насыщенный раствор NH4Cl (10 мл) и смесь встряхивали с диэтиловым эфиром (30 мл) и водой (20 мл). Эфирную фазу промывали насыщенным раствором NaCl (10 мл), высушивали (Na2SO4) и упаривали в вакууме. Остаток очищали хроматографией на оксиде кремния, элюируя гексаном, и затем повторно очищали ВЭЖХ на обращенной фазе, используя 75% ацетонитрил и получая указанное в заголовке соединение в виде прозрачной жидкости (640 мг, 28%):1H ЯМР (400 МГц, CDCl3) δ 7,38 (дд, J=8,5, 5,1 Гц, 1H), 6,90 (дд, J=9,0, 4,7 Гц, 1H); EI МС m/z 332.

Методика синтеза 25: 2-(4-хлор-2,2-дифторбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

5-бром-4-хлор-2,2-дифторбензо[d][1,3]диоксол (1,0 г, 3,7 ммоль) растворяли в сухом тетрагидрофуране (12 мл), охлаждали до -20 -30°C и по частям обрабатывали раствором комплекса изопропилмагнийхлорида-хлорида лития (1,3М; 3,1 мл, 4,1 ммоль). Через 90 мин, в течение которых температура повышалась от -20 до 0°C, добавляли 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксаборолан (830 мкл, 750 мг, 4,1 ммоль) и продолжали перемешивание при 0-20°C в течение 90 мин. Реакционную смесь гасили добавлением насыщенного раствора NH4Cl (10 мл) и полученную смесь экстрагировали этилацетатом (30 мл). Водную фазу вновь экстрагировали этилацетатом (15 мл) и объединенные органические фазы промывали насыщенным раствором NaCl (15 мл), высушивали (Na2SO4) и упаривали, получая указанное в заголовке соединение в виде белого твердого вещества (1,2 г, примерно 100%):1H ЯМР (400 МГц, CDCl3) δ 7,52 (д, J=8,1 Гц, 1H), 6,99-6,94 (м, 1H), 1,36 (с, 12H);19F ЯМР (376 МГц, CDCl3) δ -49,62 (с); EI МС m/z 318.

Методика синтеза 26: 4-фторбензо[d][1,3]диоксол-2-тион

3-фторбензол-1,2-диол (5,0 г, 39 ммоль) и тиофосген (3,3 мл, 5,0 г, 42 ммоль) смешивали в хлороформе (50 мл), охлаждали до 10°C и по каплям в течение 30 мин при энергичном перемешивании добавляли гидроксид натрия (10% раствор; 36 г, 90 ммоль). После перемешивания в течение 2 ч при комнатной температуре хлороформ удаляли в вакууме, образовавшееся твердое вещество собирали фильтрованием и промывали водой. Полученное твердое вещество растворяли в этилацетате (100 мл), раствор промывали водой (30 мл) и насыщенным раствором NaCl (30 мл), высушивали (Na2SO4) и упаривали. Неочищенное твердое вещество очищали хроматографией на оксиде кремния, элюируя смесью 0-30% этилацетат-гексан, и получая указанное в заголовке соединение (1,5 г, 77%): т.пл. 58-59°C;1H ЯМР (400 МГц, CDCl3) δ 7,28 (м, 1H), 7,12 (м, 2H);19F ЯМР (376 МГц, CDCl3) δ -131,32; EI МС m/z 170.

Методика синтеза 27: 5-бром-2,2,4-трифторбензо[d][1,3]диоксол

4-фторбензо[d][1,3]диоксол-2-тион (4,8 г, 28 ммоль) растворяли в дихлорметане (75 мл), охлаждали до -30°C и обрабатывали смесью фтористый водород (HF)-пиридин (раствор 70 массовых процентов (масс.%); 18 мл, 20 г, 140 ммоль). Порциями в течение 30 мин добавляли 1,3-дибром-5,5-диметилимидазолин-2,4-дион (9,7 г, 34 ммоль). Смесь перемешивали в течение 2 ч при температуре -20 - -30°C и затем перемешивали с 5% раствором NaHSO3 (20 мл) в течение 10 мин. Органическую фазу отделяли, высушивали (Na2SO4) и осторожно удаляли дихлорметан отгонкой через 200-миллиметровую (мм) колонку Vigreux при атмосферном давлении. Когда большая часть дихлорметана выходила через колонку, давление понижали примерно до 150 миллиметров ртутного столба (ммHg, мм рт.ст.). Продолжали отгонку и собирали фракцию, кипящую при 45-55°C, получая указанное в заголовке соединение в виде прозрачной жидкости (3,2 г, 45%):1H ЯМР (400 МГц, CDCl3) δ 7,28 (дд, J=8,6, 6,2 Гц, 1H), 6,81 (дд, J=8,6, 1,3 Гц, 1H);19F ЯМР (376 МГц, CDCl3) δ -49,25 (с), -126,72 (с); EI МС m/z 254.

Методика получения 28: 4,4,5,5-тетраметил-2-(2,2,4-трифторбензо[d][1,3]диоксол-5-ил)-1,3,2-диоксаборолан

5-бром-2,2,4-трифторбензо[d][1,3]диоксол (4,0 г, 16 ммоль) растворяли в 20 мл сухого тетрагидрофурана, охлаждали до -20°C и порциями в течение 10 мин обрабатывали комплексом изопропилмагнийхлорид-хлорид лития (1,3М в тетрагидрофуране; 13 мл, 17 ммоль). После перемешивания в течение 30 мин при температуре от -20°C до 0°C, добавляли 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксаборолан (3,1 г, 17 ммоль) и продолжали перемешивание в течение 1 ч при 10-15°C. После обработки насыщенным раствором NH4Cl (10 мл), смесь разбавляли этилацетатом (50 мл). Органическую фазу промывали насыщенным раствором NaCl (15 мл), высушивали (Na2SO4) и упаривали, получая указанное в заголовке соединение в виде коричневого твердого вещества (3,5 г, 72%):1H ЯМР (400 МГц, CDCl3) δ 7,46 (д, J=26,5 Гц, 1H), 6,90 (дд, J=18,5, 4,5 Гц, 1H), 1,35 (с, 12H);19F ЯМР (376 МГц, CDCl3) δ -49,70 (с), -126,00 (с); EI МС m/z 302.

Методика получения 29: 2-(2,2-дифтор-4-метилбензо[d][1,3]диоксол-5-ил)-5,5-диметил-1,3,2-диоксаборолан

5-бром-2,2-дифтор-4-метилбензо[d][1,3]диоксол (полученный, как описано в заявке Nakamura, Yuji; Mitani, Shigeru; Tsukuda, Shintar, WO2007069777; 1,0 г 4,0 ммоль) смешивали в сухом ДМСО (10 мл) с комплексом 1,1'-бис(дифенилфосфино)ферроцендихлор-палладия (II) с дихлорметаном (330 мг, 0,40 ммоль), ацетатом калия (1,2 г, 12 ммоль) и 5,5,5',5'-тетраметил-2,2'-би(1,3,2-диоксабороланом) (950 мг, 4,2 ммоль), нагревали до 80°C в течение 4 ч и затем оставляли стоять в течение ночи. Смесь встряхивали с этилацетатом (50 мл) и водой (30 мл). Органическую фазу промывали водой, насыщенным раствором NaCl, высушивали (Na2SO4) и упаривали. Остаток очищали хроматографией на оксиде кремния, элюируя смесью 5-50% этилацетат-гексан, и получая указанное в заголовке соединение (540 мг, 48%):1H ЯМР (400 МГц, CDCl3) δ 7,55-7,48 (м, 1H), 6,88-6,79 (м, 1H), 5,51-5,47 (м, 1H), 3,83-3,64 (м, 5H), 1,02 (д, J=4,9 Гц, 7H);19F ЯМР (376 МГц, CDCl3) δ -49,91 (д, J=7,1 Гц); EI МС m/z 284.

Методика синтеза 30: 1-бром-2-(2-бром-1,1,2,2-тетрафторэтокси)-3-фторбензол

2-бром-6-фторфенол (10,2 г, 53 ммоль), карбонат калия (7,3 г, 53 ммоль), 1,2-дибром-тетрафторэтан (21 г, 80 ммоль) и 1-бутантиол (1,1 г, 12 ммоль) смешивали в сухом N,N-диметилформамиде (75 мл) и нагревали до 50°C при перемешивании в реакторе для работы под давлением. После охлаждения, содержимое реактора смешивали с 1,0М гидроксидом натрия (NaOH; 100 мл) и три раза экстрагировали диэтиловым эфиром (порциями 80 мл). Объединенные экстракты промывали водой (15 мл), 2,0М NaOH (45 мл), высушивали (Na2SO4) и концентрировали на роторном испарителе. Полученный продукт очищали хроматографией на силикагеле, элюируя гексаном и получая указанное в заголовке соединение в виде прозрачной жидкости (15 г, 76%):1H ЯМР (400 МГц, CDCl3) δ 7,48-7,39 (м, 1H), 7,22-7,14 (м, 2H); EI МС m/z 368.

Методика синтеза 31: 2,2,3,3,7-пентафтор-2,3-дигидробензофуран

1-бром-2-(2-бром-1,1,2,2-тетрафторэтокси)-3-фторбензол (14 г, 38 ммоль), порошок меди (12,2 г, 192 ммоль) и 2,2'бипиридин (610 мг, 3,9 ммоль) смешивали в сухом ДМСО (55 мл) и нагревали до 150°C в течение 1,5 ч. В реакторе создавали вакуум (примерно 20 мм) и отгоняли дистиллят через верхнюю часть реактора до тех пор, пока температура в реакторе не достигала 100°C. Дистиллят, содержащий продукт и ДМСО, разбавляли смесью 1:1 диэтиловый эфир-пентан (30 мл), промывали водой (3×5 мл), высушивали и перегоняли при давлении 1 атмосфера (атм) через 200 мм колонку Vigreux, удаляя основную массу растворителей. Создавали вакуум (примерно 20 мм рт.ст) и собирали фракцию, кипящую при 60-65°C, получая указанное в заголовке соединение в виде прозрачной жидкости (5,1 г, 64%):1H ЯМР (400 МГц, CDCl3) δ 7,40-7,31 (м, 2H), 7,25-7,17 (м, 1H); EI МС m/z 210.

Методика синтеза 32: 2,2,3,3,7-пентафтор-6-йод-2,3-дигидробензофуран

2,2,3,3,7-пентафтор-2,3-дигидробензофуран (500 мг, 2,4 ммоль) порциями добавляли к охлажденному до -70°C раствору диизопропиламида лития (LDA), который готовили в сухом тетрагидрофуране (7 мл) из диизопропиламина (380 мг, 3,8 ммоль) и 2М н-BuLi (1,4 мл, 3,6 ммоль). Через 40 мин при -70°C добавляли раствор йода (1,0 г, 4,0 ммоль) в тетрагидрофуране (5 мл) в течение 15 мин. Через 20 минут при -70°C, температуру смеси повышали до -20°C и гасили добавлением насыщенного раствора NH4Cl. Смесь обрабатывали 10% NaHSO3 (15 мл), перемешивали в течение 10 мин и дважды экстрагировали диэтиловым эфиром (порциями по 15 мл). Объединенные экстракты высушивали (Na2SO4) и упаривали. Остаток очищали ВЭЖХ на обращенной фазе, элюируя смесью 85% ацетонитрил-вода и получая указанное в заголовке соединение (200 мг, 25%):1H ЯМР (400 МГц, CDCl3) δ 7,25 (дд, J=8,1, 4,8 Гц, 1H), 6,63 (дд, J=8,0, 1,1 Гц, 1H), 4,13 (с, 3H); EI МС m/z 336.

Методика синтеза 33: 5-бром-2,2-дифтор-4-метоксибензо[d][1,3]диоксол

Раствор LDA получали из диизопропиламина (4,2 г, 41 ммоль) и н-BuLi (2,5М; 15,4 мл, 38 ммоль) в сухом тетрагидрофуране (100 мл). Раствор охлаждали до -70°C и порциями добавляли 5-бром-2,2-дифторбензо[d][1,3]диоксол (7,0 г, 30 ммоль). Через 2 ч при -70°C порциями добавляли триметилборат (4,3 г, 41 ммоль), перемешивали при -70°C в течение 1,5 ч и затем давали нагреться до комнатной температуры в течение ночи. Смесь охлаждали от -30 до -40°C и осторожно обрабатывали 28% перуксусной кислотой. Смесь перемешивали в течение 30 мин при -30°C, нагревали до 5-10°C, обрабатывали 10% раствором NaHSO3 (100 мл) и перемешивали в течение 20 мин. Смесь подкисляли добавлением 6М HCl и разбавляли насыщенным раствором NaCl (75 мл). Смесь экстрагировали этилацетатом (2×100 мл) и объединенные экстракты промывали насыщенным раствором NaCl (50 мл), высушивали (Na2SO4) и упаривали на роторном испарителе. Технический фенол растворяли в сухом ДМСО (50 мл), обрабатывали 95% NaH (750 мг, 30 ммоль) и перемешивали в течение 30 мин, получая прозрачный раствор. Порциями добавляли метил йодид (5,0 г, 35 ммоль) и перемешивали смесь в течение 20 ч при 20°C. Добавляли еще 200 мг NaH и продолжали перемешивание в течение еще 1 ч. Полученную смесь выливали в воду (100 мл) и экстрагировали диэтиловым эфиром (2×75 мл). Объединенные экстракты промывали водой (2×20 мл), насыщенным раствором NaCl (20 мл), высушивали (Na2SO4) и упаривали. Сырой продукт очищали хроматографией на оксиде кремния, элюируя градиентом 0-20% этилацетат-гексан и получая указанное в заголовке соединение в виде прозрачной жидкости (2,5 г, 31%):1H ЯМР (400 МГц, CDCl3) δ 7,25 (д, J=8,5 Гц, 1H), 6,63 (д, J=8,5 Гц, 1H), 4,13 (с, 3H);19F ЯМР (376 МГц, CDCl3) δ -49,66; EI МС m/z 266.

Методика синтеза 34: 2-(2,2-дифтор-4-метоксибензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

2-(2,2-дифтор-4-метоксибензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан (1,1 г, 4,1 ммоль) растворяли в сухом тетрагидрофуране (10 мл), охлаждали до 0-5°C и порциями добавляли раствор комплекса изопропилмагнийхлорид-хлорид лития (1,3М; 3,5 мл, 4,5 ммоль). Смесь перемешивали в течение 1 ч при 0-5°C, обрабатывали 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксабороланом (840 мг, 4,5 ммоль) и перемешивали при 20°C в течение 90 мин. Смесь обрабатывали насыщенным раствором NH4Cl (5 мл) и перемешивали в течение 10 мин. Смесь экстрагировали этилацетатом (30 мл), экстракт промывали насыщенным раствором NaCl (10 мл), высушивали (Na2SO4) и упаривали на роторном испарителе, получая указанное в заголовке соединение в виде масла, которое затвердевало при стоянии (1,2 г, 93%):1H ЯМР (400 МГц, CDCl3) δ 7,42 (д, J=8,0 Гц, 1H), 6,72 (д, J=8,0 Гц, 1H), 4,06 (с, 3H), 1,34 (с, 12H);19F ЯМР (376 МГц, CDCl3) δ -50,09; EI МС m/z 314.

Методика синтеза 35: 3,5-дифторбензол-1,2-диол

3,5-дифтор-2-метоксифенол (1,0 г, 6,3 ммоль, полученный, как описано в Jones, Lyn H.; Randall, Amy; Barba, Oscar; Selby, Matthew D., Organic & Biomolecular Chemistry 2007, 5, 3431-3433) растворяли в сухом дихлорметане (11 мл), охлаждали до -20 -30°C и порциями добавляли раствор трибромида бора (BBr3) в дихлорметане (1,0М; 13 мл, 13 ммоль). Охлаждающую баню удаляли и смесь перемешивали в течение 20 ч при 20°C. Смесь охлаждали до -30°C, порциями добавляли воду (3 мл) и затем повышали температуру до 20°C. Добавляли 6М HCl (10 мл) и этилацетат (30 мл), и перемешивали смесь в течение 20 мин, получая две прозрачные фазы. Водную фазу экстрагировали этилацетатом (20 мл) и объединенные органические фазы промывали насыщенным раствором NaCl (10 мл), высушивали (Na2SO4) и упаривали на роторном испарителе, получая указанное в заголовке соединение в виде масла, которое затвердевало при стоянии (720 мг, 78%):1H ЯМР (400 МГц, CDCl3) δ 6,51 (ддд, J=9,5, 2,8, 2,1 Гц, 1H), 6,45 (ддд, J=10,3, 8,7, 2,9 Гц, 1H), 5,71 (с, 1H), 5,06 (с, 1H);19F ЯМР (376 МГц, CDCl3) δ -119,56, -136,16; EI МС m/z 146.

Методика синтеза 36: 4,6-дифторбензо[d][1,3]диоксол-2-тион

3,5-дифторбензол-1,2-диол (670 мг, 4,6 ммоль) перемешивали в сухом хлороформе (8 мл), обрабатывали тиофосгеном (580 мг, 5,0 ммоль), охлаждали до 5-10°C и по каплям в течение 45 мин добавляли 10% раствор NaOH (4,2 г, 11 ммоль). Через 30 мин летучие вещества удаляли на роторном испарителе и твердый остаток собирали фильтрованием и промывали водой. Твердое вещество растворяли в этилацетате (30 мл), промывали водой (2×20 мл), промывали насыщенным раствором NaCl (1×10 мл), высушивали (Na2SO4) и упаривали. Остаток очищали хроматографией на оксиде кремния, элюируя градиентом 0-20% этилацетат-гексан, и получая указанное в заголовке соединение (710 мг, 82%):1H ЯМР (400 МГц, CDCl3) δ 6,95 (ддд, J=6,8, 2,3, 1,4 Гц, 1H), 6,89 (тд, J=9,5, 2,3 Гц, 1H);19F ЯМР (376 МГц, CDCl3) δ -109,99 (с), -127,93 (с); EI МС m/z 188.

Методика синтеза 37: 2,2,4,6-тетрафторбензо[d][1,3]диоксол

4,6-дифторбензо[d][1,3]диоксол-2-тион (9,0 г, 48 ммоль) растворяли в сухом дихлорметане (100 мл) в полиэтиленовой бутыли, охлаждали до -30 -35°C и обрабатывали 70% комплексом пиридин-фтористый водород (68 г, 480 ммоль). Смесь выдерживали при этой температуре и порциями в течение 1 ч добавляли N-йодсукцинимид (32 г, 144 ммоль). Смесь перемешивали в течение 3 ч и повышали температуру до 5°C. После охлаждения до -30°C, к смеси при энергичном перемешивании порциями добавляли 20% NaHSO3 (75 мл). Смесь фильтровали через диатомовую землю для удаления твердого темного вещества. Отделенную водную фазу экстрагировали дихлорметаном (75 мл) и объединенные экстракты промывали водой (2х50 мл) и промывали насыщенным раствором NaCl (1х50 мл). Растворитель удаляли отгонкой при атмосферном давлении через 300 мм колонку Vigreux. Остаток отгоняли при 310 мм рт.ст и фракция, собранная при 40-45°C содержала указанное в заголовке соединение в виде прозрачной жидкости (1,3 г, 14%):1H ЯМР (400 МГц, CDCl3) δ 6,71 (м, 1H), 6,68 (м, 1H);19F ЯМР (376 МГц, CDCl3) δ -49,47, -113,41, -131,95; EI МС m/z 194.

Методика синтеза 38: 2,2,4,6-тетрафтор-5-йодбензо[d][1,3]диоксол

2,2,4,6-тетрафторбензо[d][1,3]диоксол (500 мг, 2,6 ммоль) растворяли в сухом тетрагидрофуране (7 мл), охлаждали до -70°C, по каплям добавляли втор-BuLi (1,3М; 2,1 мл, 2,7 ммоль) и перемешивали в течение 1 ч при -70°C. К полученной смеси по каплям в течение 10 мин добавляли раствор йода (1,1 г, 4,4 ммоль) в тетрагидрофуране (5 мл). Через 2 ч при -70°C, смесь обрабатывали насыщенным раствором NH4Cl, экстрагировали этиловым эфиром, высушивали (Na2SO4) и упаривали. Полученный продукт очищали ВЭЖХ на обращенной фазе, элюируя смесью 85% ацетонитрил-вода, и получая указанное в заголовке соединение (250 мг, 30%):

1H ЯМР (400 МГц, CDCl3) δ 6,80-6,77 (д, J=8,7 Гц, 1H), 6,77-6,75 (д, J=8,7 Гц, 1H);19F ЯМР (376 МГц, CDCl3) δ -48,72, -99,73, -132,62; EI МС m/z 320.

Методика синтеза 39: 4,6-дифторбензо[d][1,3]диоксол

3,5-дифторбензол-1,2-диол (10 г, 69 ммоль) растворяли в сухом N,N-диметилформамиде (100 мл), обрабатывали карбонатом цезия (56 г, 170 ммоль) и перемешивали в течение 30 мин при 20°C. Добавляли бромхлорметан (12 г, 90 ммоль) и смесь нагревали при перемешивании при 60°C в течение 19 ч. После охлаждения смесь встряхивали с водой (100 мл) и диэтиловым эфиром (100 мл). Водную фазу повторно экстрагировали эфиром (50 мл). Объединенные экстракты промывали водой (2х20 мл), промывали насыщенным NaCl (1х10 мл) и высушивали (Na2SO4). Основную часть эфира удаляли отгонкой при атмосферном давлении через 300 мм колонку Vigreux. Понижали давление до 75 мм рт.ст. и отгоняли продукт при 70-90°C, получая указанное в заголовке соединение в виде густого масла (3,0 г, 28%):1H ЯМР (400 МГц, CDCl3) δ 6,45 (м, 1H), 6,42 (д, J=2,4 Гц, 1H), 6,39 (д, J=2,4 Гц, 1H), 6,02 (с, 2H);19F ЯМР (376 МГц, CDCl3) δ -117,99, -135,90; EI МС m/z 158.

Методика синтеза 40: 4,6-дифтор-5-йодбензо[d][1,3]диоксол

4,6-дифторбензо[d][1,3]диоксол (300 мг, 1,9 ммоль) и N-йодсукцинимид (640 мг, 2,9 ммоль) смешивали в сухом ацетонитриле (5 мл), добавляли трифторуксусную кислоту (430 мг, 3,8 ммоль) и перемешивали в течение 20 ч. Смесь перемешивали с раствором NaHSO3 (100 мг в 2 мл воды) и затем встряхивали с этилацетатом (30 мл) и насыщенным раствором NaCl (5 мл). Органическую фазу промывали насыщенным раствором NaCl (5 мл), высушивали (Na2SO4) и упаривали. Полученный продукт очищали хроматографией на оксиде кремния, элюируя градиентом 0-5% этилацетат-гексан, и получая указанное в заголовке соединение в виде твердого вещества белого цвета (410 мг, 76%): т.пл. 65-66°C;1H ЯМР (400 МГц, CDCl3) δ 6,54 (дд, J=6,9, 1,6 Гц, 1H), 6,07 (с, 2H);19F ЯМР (376 МГц, CDCl3) δ -99,31, -117,98; EI МС m/z 284.

Методика синтеза 41: 4,4,5,5-тетраметил-2-(2-метилбензо[d][1,3]диоксол-5-ил)-1,3,2-диоксаборолан

5-бром-2-метилбензо[d][1,3]диоксол (1,0 г, 4,7 ммоль, полученный как описано в заявке Matyus, Peter; Magyar, Kalman; Pihlavista, Marjo; Gyires, Klara; Haider, Norbert; Wang, Yinghua; Woda, Patrick; Dunkel, Petra; Toth-Sarudy, Eva; Turos, Gyoergy, WO2010029379) растворяли в сухом тетрагидрофуране (10 мл), охлаждали до -70°C и обрабатывали н-BuLi (2,5М; 2,1 мл, 4,7 ммоль) в течение 5 мин. Через 1 ч добавляли 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксаборолан (1,1 г, 6,0 ммоль) и перемешивали смесь в течение 90 мин при температуре от -70 до -30°C. После добавления насыщенного раствора NH4Cl (5 мл), смесь встряхивали с этилацетатом (40 мл) и насыщенным раствором NaCl (10 мл), высушивали (Na2SO4) и упаривали. Полученный продукт очищали хроматографией на оксиде кремния, элюируя градиентом 0-30% этилацетат-гексан, и получая указанное в заголовке соединение (730 мг, 59%):1H ЯМР (400 МГц, CDCl3) δ 7,33 (дд, J=7,7, 1,1 Гц, 1H), 7,18 (д, J=0,9 Гц, 1H), 6,77 (д, J=7,8 Гц, 1H), 6,25 (кв., J=5,0 Гц, 1H), 1,66 (д, J=4,9 Гц, 3H), 1,32 (с, 12H); EI МС m/z 262.

Методика синтеза 42: 2-(бензо[d][1,3]оксатиол-5-ил)-4,4,5,5-тетраметил-2,3,2-диоксаборолан

5-бромбензо[d][1,3]оксатиол (1,0 г, 4,6 ммоль, полученный, как описано в Cabiddu, Salvatore; Cerioni, Giovanni; Cocco, Maria Teresa; Maccioni, Antonio; Plumitallo, Antonio, Journal of Heterocyclic Chemistry 1982, 19, 135-139) растворяли в сухом тетрагидрофуране (12 мл), охлаждали до -70°C, порциями добавляли н-BuLi (2,5М, 1,9 мл, 4,8 ммоль) и перемешивали при -70°C в течение 30 мин. Добавляли 4,4,5,5-тетраметил-1,3,2-диоксаборолан (900 мг, 4,8 ммоль) и продолжали перемешивание в течение 1,5 ч, причем за это время температура повышалась до -30°C. Смесь обрабатывали насыщенным раствором NH4Cl (5 мл) и экстрагировали этилацетатом (2×25 мл). Объединенные экстракты промывали насыщенным раствором NaCl (10 мл), высушивали (Na2SO4) и упаривали, получая указанное в заголовке соединение, которое использовали без дальнейшей очистки (1,2 г, 99%):1H ЯМР (400 МГц, CDCl3) δ 7,62 (д, J=1,1 Гц, 1H), 7,48 (дд, J=8,0, 1,3 Гц, 1H), 6,82 (д, J=8,1 Гц, 1H), 5,69 (с, 2H), 1,32 (с, 12H); EI МС m/z 264.

Методика синтеза 43: 2,2-дифтор-5-метокси-6-нитробензо[d][1,3]диоксол

2,2,5-трифтор-6-нитробензо[d][1,3]диоксол (2,5 г, 11 ммоль) растворяли в сухом метаноле (20 мл), обрабатывали 30% раствором метоксида натрия (3,1 г, 17 ммоль) и перемешивали при 20°C в течение 1 ч. После нейтрализации избытка метоксида добавлением уксусной кислоты, летучие компоненты удаляли на роторном испарителе. Остаток смешивали с этилацетатом (50 мл), промывали насыщенным раствором NaHCO3 (10 мл), насыщенным раствором NaCl (10 мл), высушивали (Na2SO4) и упаривали. Полученный продукт очищали хроматографией на оксиде кремния, элюируя градиентом 0-30% этилацетат-гексан, и получая указанное в заголовке соединение в виде белого твердого вещества (1,8 г, 70%): т.пл.84-85°C;1H ЯМР (400 МГц, CDCl3) δ 7,71 (с, 1H), 6,89 (с, 1H), 3,98 (с, 3H);19F ЯМР (376 МГц, CDCl3) δ -49,90 (с); EI МС m/z 233.

Методика синтеза 44: 2,2-дифтор-6-метоксибензо[d][1,3]диоксол-5-амин

2,2-дифтор-5-метокси-6-нитробензо[d][1,3]диоксол (1,7 г, 7,3 ммоль) растворяли в этилацетате (50 мл) и обрабатывали 5% палладием на угле (200 мг) и водородом под давлением 40-50 фунтов на кв. дюйм (psi), встряхивая на шейкере. Через 90 мин катализатор отделяли фильтрованием, растворитель удаляли выпариванием и высушивали продукт в вакууме, получая указанное в заголовке соединение в виде коричневого твердого вещества (1,5 г, количественный выход):1H ЯМР (400 МГц, CDCl3) δ 6,63 (с, 1H), 6,50 (с, 1H), 3,82 (с, 3H), 3,76 (д, J=23,0 Гц, 2H);19F ЯМР (376 МГц, CDCl3) δ -50,32 (с); EI МС m/z 203.

Методика синтеза 45: 2,2-дифтор-5-йод-6-метоксибензо[d][1,3]диоксол

2,2-дифтор-6-метоксибензо[d][1,3]диоксол-5-амин (1,4 г, 6,9 ммоль) растворяли в дихлорметане (5 мл) и порциями при интенсивном перемешивании добавляли к концентрированной HCl (75 мл), получая рыхлую белую суспензию. Смесь охлаждали до 0-5°C и порциями добавляли нитрит натрия (710 мг, 10 ммоль) в воде (10 мл). Через 40 мин полученную смесь тонкой струйкой при быстром перемешивании выливали в раствор йодида натрия (3,1 г, 21 ммоль) в воде (75 мл) с дихлорметаном (50 мл). Через 45 мин смесь перемешивали с 15% раствором NaHSO3 в течение 10 мин. Водную фазу отделяли и экстрагировали дихлорметаном (30 мл), и объединенные экстракты промывали насыщенным раствором NaCl (15 мл), высушивали (Na2SO4) и упаривали. Полученное вещество очищали хроматографией на оксиде кремния, элюируя градиентом 0-15% этилацетат-гексан, и получая указанное в заголовке соединение в виде твердого белого вещества (1,8 г, 83%): т.пл. 50-51°C;1H ЯМР (400 МГц, CDCl3) δ 7,45 (с, 1H), 6,69 (с, 1H), 3,86 (с, 3H);19F ЯМР (376 МГц, CDCl3) δ -49,81 (с); EI МС m/z 314.

Методика синтеза 46: 2-(2,2-дифтор-6-метоксибензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

2,2-дифтор-5-йод-6-метоксибензо[d][1,3]диоксол (1,6 г, 5,0 ммоль) растворяли в сухом тетрагидрофуране (15 мл), охлаждали до 0-5°C и порциями добавляли изопропилмагний литий хлорид (1,3М; 4,1 мл, 5,3 ммоль). Через 50 мин добавляли 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксаборолан (1,0 г, 5,4 ммоль) и продолжали перемешивание в течение 40 мин при 15-20°C. Смесь обрабатывали насыщенным раствором NH4Cl (10 мл) и затем смешивали с насыщенным раствором NaCl (10 мл) и этилацетатом (20 мл). Органическую фазу промывали насыщенным раствором NaCl (10 мл), высушивали (Na2SO4) и упаривали, получая указанное в заголовке соединение в виде густого масла, которое использовали без дополнительной очистки (1,4 г, 89%):1H ЯМР (400 МГц, CDCl3) δ 7,35 (с, 1H), 6,65 (с, 1H), 3,81 (с, 3H), 1,34 (с, 12H);19F ЯМР (376 МГц, CDCl3) δ -50,17 (с); EI МС m/z 314.

Методика синтеза 47: 2-(6-хлор-2,2-дифторбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

5-бром-6-хлор-2,2-дифторбензо[d][1,3]диоксол (1,0 г, 3,7 ммоль) растворяли в сухом тетрагидрофуране (7 мл), охлаждали до 0-5°C и порциями добавляли изопропилмагний литий хлорид (1,3М, 3,0 мл, 3,9 ммоль). Через 30 мин добавляли 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксаборолан (730 мг, 4,0 ммоль), и продолжали перемешивание в течение 45 мин при 10-15°C. Добавляли насыщенный раствор NH4Cl (10 мл) и смесь встряхивали с этилацетатом (20 мл) и насыщенным раствором NaCl (10 мл). Органическую фазу промывали насыщенным раствором NaCl (10 мл), высушивали (Na2SO4) и упаривали, получая указанное в заголовке соединение в виде твердого вещества белого цвета (1,2 г, колич.):1H ЯМР (400 МГц, ДМСО-d6) δ 7,64 (с, 1H), 7,53 (с, 1H), 1,30 (с, 12H);19F ЯМР (376 МГц, ДМСО-d6) δ -48,97 (с); EI МС m/z 318.

Методика синтеза 48: 2-(7-метоксибензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

6-бром-4-метоксибензо[d][1,3]диоксол (1,5 г, полученный согласно Shirasaka, Tadashi; Takuma, Yuki; Imaki, Naoshi. Synthetic Communications 1990, 20, 1223-1232) растворяли в сухом тетрагидрофуране (25 мл), охлаждали до 5°C и добавляли изопропилмагний литий хлорид (1,3М, 5,2 мл, 6,8 ммоль). Через 50 мин при 10°C, температуру повышали до 40°C и перемешивали в течение 5 ч. Смесь охлаждали до 20°C, добавляли 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксаборолан (1,3 г, 7,1 ммоль) и перемешивали в течение 3 ч. Смесь обрабатывали насыщенным раствором NH4Cl (2 мл), затем 1М HCl (8 мл) и этилацетатом (20 мл), после чего перемешивали в течение 10 минут. Органическую фазу промывали насыщенным раствором NaCl (10 мл), высушивали (Na2SO4) и упаривали. Продукт очищали флэш-хроматографией, элюируя дихлорметаном, и получая указанное в заголовке соединение в виде твердого вещества белого цвета (600 мг, 33%): т.пл.: 86-88°C;1H ЯМР (400 МГц, CDCl3) δ 7,01 (д, J=0,5 Гц, 1H), 6,97 (д, J=0,8 Гц, 1H), 5,98 (с, 2H), 3,93 (с, 4H), 1,33 (с, 12H); EI МС m/z 278.

Методика синтеза 49: 6-бром-4-фторбензо[d][1,3]диоксол-2-тион

5-бром-3-фторбензол-1,2-диол (2,0 г, 9,7 ммоль, полученный согласно Lu, Hejun; Tang, Peng Cho; Chen, Yiqian; Wang, Shenglan; Wang, Hua; Zhang, Lei; Li, Jun, WO 2011140936 A1) растворяли в хлороформе (25 мл), обрабатывали тиофосгеном (1,2 г, 11 ммоль) и охлаждали до 0-5°C. По каплям при энергичном перемешивании в течение 30 мин добавляли гидроксид натрия (10% водный раствор, 8,9 г, 22 ммоль). Через 1 ч хлороформ удаляли в вакууме и доводили pH до значения 2 добавлением 6М HCl. Образовавшееся твердое вещество смешивали с этилацетатом (120 мл), промывали насыщенным раствором NaCl (30 мл), высушивали (Na2SO4) и упаривали. Полученное вещество очищали флэш-хроматографией, элюируя градиентом 0-30% этилацетат-гексан и получая указанное в заголовке соединение в виде желтовато-коричневого твердого вещества (1,5 г, 62%): т.пл. 41-42°C;1H ЯМР (400 МГц, CDCl3) δ 7,35-7,30 (м, 1H), 7,29 (д, J=1,6 Гц, 1H);19F ЯМР (376 МГц, CDCl3) δ -128,93; EI МС m/z 248/250.

Методика синтеза 50: 6-бром-2,2,4-трифторбензо[d][1,3]диоксол

6-бром-4-фторбензо[d][1,3]диоксол-2-тион (6,9 г, 28 ммоль) растворяли в сухом дихлорметане (150 мл), охлаждали до -40°C и обрабатывали гидрофторидом пиридина (70 масс.% HF, 39 г, 273 ммоль). Порциями добавляли N-йодсукцинимид (19 г, 84 ммоль), поддерживая температуру ниже -30°C. Смесь перемешивали в течение 30 мин при -35 - 0°C, затем давали нагреться до 20°C и перемешивали в течение 30 мин. Применяя внешнее охлаждение для поддержания температуры ниже 35°C, к смеси порциями добавляли раствор NaHSO3 (8 г) в воде (50 мл) и перемешивали в течение 15 мин. Смесь обрабатывали дополнительным количеством воды (200 мл) для растворения твердых веществ. Органическую фазу промывали насыщенным раствором NaCl (30 мл) и высушивали (Na2SO4). Основную массу растворителя удаляли отгонкой при атмосферном давлении через колонку Oldershaw с 7 тарелками, и когда объем остатка реакционной смеси в реакторе уменьшался примерно до 50 мл, продолжали отгонку через 200М колонку Vigreux до достижения температуры в верхней части колонки 75°C. После охлаждения до комнатной температуры, давление понижали до 50 мм рт.ст. причем продукт отгонялся при температуре 75-80°C через простую дистилляционную головку, и в результате получали указанное в заголовке соединение в виде бледно-розовой жидкости (5,3 г, 74%):1H ЯМР (400 МГц, CDCl3) δ 7,11 (дд, J=9,0, 1,7 Гц, 1H), 7,07 (м, 1H);19F ЯМР (376 МГц, CDCl3) δ -49,56, -132,65; EI МС m/z 254.

Методика синтеза 51: 4,4,5,5-тетраметил-2-(2,2,7-трифторбензо[d][1,3]диоксол-5-ил)-1,3,2-диоксаборолан

6-бром-2,2,4-трифторбензо[d][1,3]диоксол (2,0 г, 7,8 ммоль) растворяли в сухом тетрагидрофуране (10 мл), охлаждали до -5 - 0°C и порциями добавляли комплекс изопропилмагний литий хлорид (1,3М, 6,3 мл, 8,2 ммоль). Удаляли охлаждающую баню и перемешивали смесь в течение 30 мин. Добавляли 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксаборолан (1,6 г, 8,4 ммоль), перемешивали смесь в течение 1 ч и затем обрабатывали насыщенным раствором NH4Cl (5 мл). Смесь разбавляли этилацетатом (40 мл) и насыщенным раствором NaCl (10 мл), после чего доводили pH до 2 добавлением HCl. Органическую фазу промывали насыщенным раствором NaCl (5 мл), высушивали (Na2SO4) и упаривали, получая указанное в заголовке соединение, которое использовали без дополнительной очистки (2 г, 85%):1H ЯМР (400 МГц, CDCl3) δ 7,36 (д, J=9,8 Гц, 1H), 7,29 (д, J=6,5 Гц, 1H), 1,33 (с, 12H);19F ЯМР (376 МГц, CDCl3) δ -49,79, -136,26; EI МС m/z 302.

Методика синтеза 52: 3-бром-6-фторбензол-1,2-диол

3-бром-6-фтор-2-гидроксибензальдегид (9,0 г, 41 ммоль, полученный согласно Castro, Alfred C.; Depew, Kristopher M.; Grogan, Michael J.; Holсon, Edward B.; Hopkins, Brian Т.; Johannes, Charles W.; Keaney, Gregg F.; Koney, Nii O.; Liu, Тao; Mann, David A.; Nevalainen, Marta; Peluso, Stephane; Perez, Lawrence Blas; Snyder, Daniel A.; Тibbitts, Тhomas Т., WO 2008024337 A2) перемешивали в 1,0М NaOH (47 мл) и обрабатывали пероксидом водорода (6%, 49 г, 86 ммоль). Применяли внешнее охлаждение для поддержания температуры реакционной смеси ниже 50°C. После перемешивания в течение в общей сложности 2 часов, смесь перемешивали с раствором NaHSO3 в 50 мл воды и экстрагировали этилацетатом (2×75 мл). Объединенные экстракты промывали насыщенным раствором NaCl (20 мл), высушивали (Na2SO4) и упаривали. Указанное в заголовке производное катехина в виде темно-оранжевой жидкости вводили в следующую стадию без дополнительной очистки (8,9 г, колич.): EI МС m/z 206.

Методика синтеза 53: 4-бром-7-фторбензо[d][1,3]диоксол-2-тион

3-бром-6-фторбензол-1,2-диол (8,9 г, 43 ммоль) растворяли в хлороформе (100 мл), охлаждали до 0-5°C и обрабатывали тиофосгеном (5,4 г, 47 ммоль). Порциями в течение 30 мин при энергичном перемешивании добавляли водный раствор гидроксида натрия (10 масс.%, 40 г, 99 ммоль). Перемешивание продолжали в течение 60 мин при 5-15°C и затем большую часть хлороформа удаляли на роторном испарителе. pH доводили до 2 добавлением 1М HCl, и выпавший в осадок тион смешивали с этилацетатом (150 мл). Органическую фазу промывали водой (25 мл), насыщенным раствором NaCl (25 мл), высушивали (Na2SO4) и упаривали. Сырой продукт очищали флэш-хроматографией, элюируя градиентом 0-20% этилацетат-гексан и получая указанное в заголовке соединение в виде желтовато-коричневого твердого вещества (6,2 г, 58%): т.пл. 72-76°C;1H ЯМР (400 МГц, CDCl3) δ 7,40 (дд, J=9,2, 4,1 Гц, 1H), 7,04 (т, J=9,1 Гц, 1H);19F ЯМР (376 МГц, CDCl3) δ -132,68; EI МС m/z 248.

Методика синтеза 54: 4-бром-2,2,7-трифторбензо[d][1,3]диоксол

4-бром-7-фторбензо[d][1,3]диоксол-2-тион (6,1 г, 25 ммоль) растворяли в сухом дихлорметане (100 мл), охлаждали до -30 - 40°C и добавляли гидрофторид пиридина (70 масс.%, 35 г, 245 ммоль). При температуре -25 -35°C порциями добавляли N-йодсукцинимид, давали смеси нагреться до 20°C и перемешивали в течение 2 ч. Смесь темного цвета охлаждали до 0°C и при перемешивании обрабатывали 15% раствором NaHSO3 (30 мл). Через 20 мин смесь разбавляли дихлорметаном (75 мл) и водой (200 мл) для растворения твердых веществ. Органические фазы промывали насыщенным раствором NaCl (25 мл) и высушивали (Na2SO4). Растворитель удаляли отгонкой при атмосферном давлении через 450 мм колонку Vigreux. Продукт собирали при давлении 30-40 мм рт.ст и температуре 80-90°C, получая указанное в заголовке соединение в виде прозрачной жидкости (3,0 г, 47%):1H ЯМР (400 МГц, CDCl3) δ 7,18 (дд, J=9,3, 4,2 Гц, 1H), 6,85 (т, J=9,3 Гц, 1H);19F ЯМР (376 МГц, CDCl3) δ -49,08, -136,17; EI МС m/z 254.

Методика синтеза 55: 4,4,5,5-тетраметил-2-(2,2,7-трифторбензо[d][1,3]диоксол-4-ил)-1,3,2-диоксаборолан

4-бром-2,2,7-трифторбензо[d][1,3]диоксол (2,0 г, 7,8 ммоль) растворяли в сухом тетрагидрофуране (12 мл), охлаждали до -5°C и порциями добавляли комплекс изопропилмагний литий хлорид (1,3М, 6,3 мл, 8,2 ммоль). Смесь перемешивали в течение 2 ч при 5-15°C, добавляли 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксаборолан (1,6 г, 8,4 ммоль) и перемешивали в течение 2 ч при 10-20°C. Смесь обрабатывали насыщенным раствором NH4Cl (5 мл), перемешивали в течение 10 мин и затем встряхивали с 1М HCl (10 мл) и этилацетатом (75 мл). Органическую фазу промывали насыщенным раствором NaCl (10 мл), высушивали (Na2SO4) и упаривали, получая указанное в заголовке соединение в виде белого твердого вещества (2,3 г, 98%):1H ЯМР (400 МГц, CDCl3) δ 7,41 (дд, J=8,7, 5,3 Гц, 1H), 6,88 (дд, J=9,5, 8,8 Гц, 1H), 1,36 (с, 12H);19F ЯМР (376 МГц, CDCl3) δ -49,07, -131,31; EI МС m/z 302.

Методика синтеза 56: (2,2-дифтор-7-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)бензо[d][1,3]диоксол-4-ил)триметилсилан

(2,2-дифторбензо[d][1,3]диоксол-4-ил)триметилсилан (5,0 г, 22 ммоль, полученный, как описано в Goreska, Joanna; Leroux, Frederic; Schlosser, Manfred, European Journal of Organic Chemistry 2004, 1, 64-68) добавляли к перемешиваемому раствору втор-BuLi (1,4М; 10 мл, 14 ммоль) в сухом тетрагидрофуране (28 мл), охлажденному до -75°C. Через 2 ч при -75°C добавляли 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксаборолан (4,2 г, 23 ммоль) и перемешивали смесь в течение 90 мин при -75°C. Смесь обрабатывали насыщенным раствором NH4Cl (5 мл) и нагревали до 20°C. К смеси добавляли воду (75 мл), подкисляли 6М HCl и экстрагировали диэтиловым эфиром (100 мл). Органическую фазу промывали насыщенным раствором NaCl (15 мл), высушивали (Na2SO4) и упаривали, получая указанное в заголовке соединение (чистотой примерно 60%), которое использовали без дальнейшей очистки:1H ЯМР (400 МГц, CDCl3) δ 7,39 (д, J=7,5 Гц, 1H), 7,07 (д, J=7,5 Гц, 1H), 1,36 (с, 12H), 0,33 (с, 9H);19F ЯМР (376 МГц, CDCl3) δ -49,33; EI МС m/z 356.

Методика синтеза 57: 4-бром-5-фторбензол-1,2-диол

К CH2Cl2 (30 мл) в 50-мл круглодонной колбе добавляли 4-бром-5-фтор-2-метоксифенол (2 г, 9,05 ммоль). Реакционную смесь охлаждали до 0°C на бане лед/вода. Медленно в течение 5 минут с помощью шприца добавляли трибромид бора (1,027 мл, 10,86 ммоль) и убирали баню лед/вода. Реакционной смеси давали нагреться до комнатной температуры и перемешивали в течение 18 ч. Реакционную смесь помещали на баню лед/вода и медленно с помощью шприца добавляли метанол (30 мл). После удаления бани лед/вода реакционной смеси давали нагреться до комнатной температуры. Реакционную смесь переносили в делительную воронку, разбавляли этилацетатом (200 мл) и промывали водой (200 мл). Органический слой высушивали над Na2SO4 и фильтровали. Концентрирование органического раствора позволило получить 4-бром-5-фторбензол-1,2-диол в виде темно-коричневого масла (1,8 г, 96%):1H ЯМР (400 МГц, CDCl3) δ 7,03 (д, J=6,5 Гц, 1H), 6,72 (дд, J=8,3, 3,5 Гц, 1H);19F ЯМР (376 МГц, CDCl3) δ -115,91 (с); ESI МС m/z 207 ([M+H]+), 206 ([M-H]-).

Методика синтеза 58: 5-бром-6-фторбензо[d][1,3]диоксол

К N,N-диметилформамиду (25 мл) в 50 мл колбе добавляли 4-бром-5-фторбензол-1,2-диол (2 г, 9,66 ммоль), карбонат цезия (4,72 г, 14,49 ммоль) и бромхлорметан (1,875 г, 14,49 ммоль). Реакционную смесь оставляли перемешиваться при комнатной температуре в течение 1 ч и затем нагревали при наружной температуре 80°C в течение 3 ч. После охлаждения, реакционную смесь разбавляли Et2O (75 мл) и промывали водой (50 мл) и затем насыщенным раствором NaCl (50 мл). Органический слой высушивали над MgSO4 и фильтровали. Концентрирование органического раствора позволило получить 5-бром-6-фторбензо[d][1,3]диоксол в виде светло-оранжевого твердого вещества (1,8 г, 85%):1H ЯМР (400 МГц, CDCl3) δ 6,94 (д, J=5,9 Гц, 1H), 6,67 (д, J=7,9 Гц, 1H), 6,00 (с, 2H);19F ЯМР (376 МГц, CDCl3) δ -113,82 (с); ESI МС m/z 220 ([M+H]+), 218 ([M-H]-).

Методика синтеза 59: 5-бром-2,2-диметилбензо[d][1,3]диоксол

К бензолу (50 мл) в 250 мл круглодонной колбе добавляли 4-бромбензол-1,2-диол (1 г, 5,29 ммоль), 2,2-диметоксипропан (2,204 г, 21,16 ммоль) и моногидрат п-толуолсульфоновой кислоты (0,050 г, 0,265 ммоль). Колбу снабжали ловушкой Дина-Старка и нагревали до кипения в течение 18 ч. После охлаждения реакционную смесь переносили в делительную воронку и промывали 2н раствором NaOH (100 мл) и насыщенным раствором NaCl (100 мл). Органический слой высушивали MgSO4, фильтровали и концентрировали, получая 5-бром-2,2-диметилбензо[d][1,3]диоксол в виде темно-коричневого масла (767 мг, 63%):1H ЯМР (400 МГц, CDCl3) δ 6,91-6,85 (м, 2H), 6,62-6,57 (м, 1H), 1,66 (с, 6H);13C ЯМР (101 МГц, CDCl3) δ 146,81 (с), 144,25 (с), 123,64 (с), 121,02 (с), 112,05 (с), 109,40 (с), 108,46 (с), 25,83 (с); ESI МС m/z 230 ([M+H]+), 228 ([M-H]-).

Методика синтеза 60: 2-(2,2-диметилбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

К ДМСО (10 мл) добавляли ацетат калия (1,671 г, 17,03 ммоль), 4,4,4',4',5,5,5',5'-октаметил-2,2'-би(1,3,2-диоксаборолан) (1,729 г, 6,81 ммоль), 5-бром-2,2-диметилбензо[d][1,3]диоксол (1,3 г, 5,68 ммоль) и PdCl2(dppf) (0,415 г, 0,568 ммоль). Реакционную смесь нагревали при наружной температуре 80°C в течение 18 ч. После охлаждения реакционную смесь выливали в ледяную воду (50 мл). Смесь с ледяной водой переносили в делительную воронку и осуществляли две экстракции этилацетатом (50 мл). Органические слои объединяли, высушивали над Na2SO4 и фильтровали. Раствор концентрировали на 5 г целита®, используя этилацетат в качестве растворителя. Целит, пропитанный продуктом, выгружали на систему очистки Teledyne Isco и очищали хроматографией на силикагеле, используя градиент 0-30% этилацетат:гексан и получая 2-(2,2-диметилбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан в виде красного полутвердого вещества (767 мг, 49%):1H ЯМР (400 МГц, CDCl3) δ 7,31 (дт, J=6,6, 3,3 Гц, 1H), 7,15 (с, 1H), 6,74 (д, J=7,7 Гц, 1H), 1,66 (с, 6H), 1,32 (с, 12H);13C ЯМР (101 МГц, CDCl3) δ 129,21 (с), 113,78 (с), 108,15 (с), 83,59 (с), 25,86 (с), 24,82 (с); ESI МС m/z 277 ([M+H]+), 275 ([M-H]-).

Методика синтеза 61: 2-(6-фторбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

2-(6-фторбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксабороланполучали, как описано в методике синтеза 60, из 5-бром-6-фторбензо[d][1,3]диоксола в виде коричневого масла (74%):1H ЯМР (400 МГц, CDCl3) δ 7,08 (д, J=4,6 Гц, 1H), 6,55 (т, J=6,4 Гц, 1H), 5,97 (д, J=2,1 Гц, 2H), 1,24 (с, 12H);13C ЯМР (101 МГц, CDCl3) δ 131,70, 131,37, 128,34, 113,38, 101,93, 98,12, 97,80, 83,51, 24,80; ESI МС m/z 267 ([M+H]+), 265 ([M-H]-).

Методика синтеза 62: 2-(2,2-дифторбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

В высушенную в печи трехгорлую круглодонную колбу в атмосфере азота добавляли 5-бром-2,2-дифторбензо[d][1,3]диоксол (2,516 г, 10,6 ммоль) и безводный тетрагидрофуран (26 мл). Раствор охлаждали до 0°C. Медленно добавляли комплекс изопропилмагний хлорид-хлорид лития (1,3М, 10 мл, 13,0 ммоль) и перемешивали в течение 1 ч. Добавляли 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксаборолан (2,2 мл, 10,62 ммоль) и перемешивали реакционную смесь в течение 1 ч. Реакционную смесь гасили насыщенным водным раствором хлорида аммония и три раза экстрагировали этилацетатом. Объединенные органические слои промывали насыщенным раствором соли и высушивали над безводным сульфатом магния. Раствор фильтровали и концентрировали, получая 2-(2,2-дифторбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан в виде желтого масла (2,54 г, 84%):1H ЯМР (400 МГц, CDCl3) δ 7,56 (дд, J=8,0, 1,0 Гц, 1H), 7,47 (д, J=0,6 Гц, 1H), 7,06 (дд, J=7,9, 0,4 Гц, 1H), 1,34 (с, 12H);19F ЯМР (376 МГц, CDCl3) δ -50,18; EIМС m/z 284.

Методика синтеза 63: 2-(бензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

Бензо[d][1,3]диоксол (3,05 г, 25 ммоль) растворяли в тетрагидрофуране (50 мл) и охлаждали до -108°C, используя баню тетрагидрофуран/жидкий азот. По каплям добавляли втор-бутиллитий (1,4М в циклогексане, 19,64 мл, 27,5 ммоль), поддерживая температуру ниже -100°C. Затем реакционную смесь перемешивали при температурах от -100°C до -108°C в течение 2 ч, чтобы гарантировать полное депротонирование. Затем к реакционной смеси по каплям добавляли 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксаборолан (4,65 г, 25,00 ммоль), поддерживая температуру ниже -100°C. Затем давали реакционной смеси нагреться до комнатной температуры и распределяли между диэтиловым эфиром и водой. Органическую фазу экстрагировали водой еще раз, водные фазы объединяли и подкисляли HCl до pH 4. Продукт экстрагировали диэтиловым эфиром и органическую фазу высушивали и концентрировали в вакууме. Продукт очищали флэш-хроматографией (силикагель), получая указанное в заголовке соединение в виде белого твердого вещества (2,14 г, 34,5%):1H ЯМР (300 МГц, CDCl3) δ 7,21 (дд, J=7,6, 1,4 Гц, 1H), 6,90 (дд, J=7,7, 1,5 Гц, 1H), 6,82 (т, J=7,6 Гц, 1H), 6,02 (с, 2H), 1,36 (с, 12H); EI МС m/z 248.

Методика синтеза 64: 2-(2,2-дифторбензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

2,2-дифторбензо[d][1,3]диоксол (6 г, 38,0 ммоль) растворяли в тетрагидрофуране (100 мл) и охлаждали до -75°C. По каплям добавляли втор-бутиллитий (1,4М в циклогексане, 29,8 мл, 41,7 ммоль), поддерживая температуру ниже -65°C. Затем реакционную смесь перемешивали при -75°C в течение 1 ч, чтобы добиться полного депротонирования. Затем к реакционной смеси по каплям добавляли 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксаборолан (7,06 г, 38,0 ммоль), поддерживая температуру ниже -65°C. Затем реакционной смеси давали нагреться до комнатной температуры и оставляли при комнатной температуре на 2 ч, после чего распределяли между диэтиловым эфиром и водой. Водную фазу подкисляли до pH 3 12н. HCl. Продукт экстрагировали диэтиловым эфиром, органическую фазу высушивали и концентрировали в вакууме, получая указанное в заголовке соединение в виде не совсем белого твердого вещества (7,06 г, 65,5%):1H ЯМР (300 МГц, CDCl3) δ 7,43 (дд, J=7,5, 1,5 Гц, 1H), 7,13 (дд, J=7,9, 1,5 Гц, 1H), 7,05 (т, J=7,7 Гц, 1H), 1,37 (с, 12H); EI МС m/z 284.

Методика синтеза 65: 4-хлор-2,2-дифторбензо[d][1,3]диоксол

2,2-дитфорбензо[d][1,3]диоксол (6,3 г, 39,8 ммоль) растворяли в тетрагидрофуране (66 мл) и охлаждали до -78°C. По каплям добавляли н-бутиллитий (2,5М раствор в гексане; 16,74 мл, 41,8 ммоль), поддерживая температуру ниже -70°C. Затем реакционную смесь перемешивали при -78°C в течение 1 ч, чтобы добиться полного депротонирования. 1,2,2-трифтортрихлорэтан (14,93 г, 80 ммоль) растворяли в тетрагидрофуране (33 мл) и охлаждали до -65°C. Производное лития переносили по трубке в раствор 1,2,2-трифтортрихлорэтана со скоростью, которая позволяла температуре при перемешивании оставаться в пределах от -60 до -65°C. Затем реакционной смеси давали нагреться до комнатной температуры и распределяли между диэтиловым эфиром и водой. Органическую фазу концентрировали и продукт быстро пропускали через 100 г силикагеля, используя гексан в качестве растворителя и получая указанное в заголовке соединение в виде прозрачного масла (5,74 г, 74,8%):1H ЯМР (400 МГц, CDCl3) δ 7,08 (дд, J=8,2, 1,4 Гц, 1H), 7,03 (т, J=8,0 Гц, 1H), 6,97 (дд, J=7,9, 1,5 Гц, 1H); EIМС m/z 192.

Методика синтеза 66: 2-(7-хлор-2,2-дифторбензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

4-хлор-2,2-дифторбензо[d][1,3]диоксол (3 г, 15,58 ммоль) растворяли в тетрагидрофуране (50 мл) и охлаждали до -75°C. По каплям добавляли н-бутиллитий (2,5М в гексане, 6,86 мл, 17,14 ммоль), поддерживая температуру ниже -65°C. Затем реакционную смесь перемешивали при -75°C в течение 1 ч, чтобы добиться полного депротонирования. Затем к реакционной смеси по каплям добавляли 2-изопропокси-4,4,5,5-тетраметил-1,3,2-диоксаборолан (3,19 г, 17,14 ммоль), поддерживая температуру ниже -65°C. Затем реакционной смеси давали нагреться до комнатной температуры, добавляли к диэтиловому эфиру (200 мл) и экстрагировали водой (2×100 мл). Водные фазы объединяли и подкисляли до pH 4 концентрированной HCl. Продукт экстрагировали диэтиловым эфиром, органическую фазу высушивали и концентрировали в вакууме, получая указанное в заголовке соединение в виде не совсем белого твердого вещества (3,82 г, 77%):1H ЯМР (400 МГц, CDCl3) δ 7,38 (д, J=8,4 Гц, 1H), 7,06 (д, J=8,4 Гц, 1H), 1,36 (с, 12H); EI МС m/z 318.

Методика синтеза 67: 2-(2,2-дифторбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

К раствору 5-бром-2,2-дифторбензо[d][1,3]диоксола (1,5 г, 6,3 ммоль) в N,N-диметилформамиде (12,7 мл) добавляли 4,4,4',4',5,5,5',5'-октаметил-2,2'би(1,3,2-диоксаборолан) (1,6, 6,3 ммоль), ацетат калия (1,9 г, 19,0 ммоль) и 1,1'-бис(дифенилфосфино)ферроцен)дихлорпалладий (II) (0,3 г, 0,32 ммоль). Реакционную смесь нагревали при 80°C в течение 18 ч, затем реакционную смесь разбавляли Et2O и промывали водой. Органические слои отделяли, высушивали Na2SO4, фильтровали, концентрировали в вакууме и очищали хроматографией на силикагеле, элюируя 0-100% ацетоном в гексане, и получая коричневое масло (0,9 г, 50%):1H ЯМР (400 МГц, ДМСО-d6) δ 7,55 (д, J=8,0 Гц, 1H), 7,53 (с, 1H), 7,43 (д, J=8,0 Гц, 1H), 1,30 (с, 12H);19F ЯМР (376 МГц, ДМСО-d6) δ -49,26 (с); EI МС m/z 284.

Методика синтеза 68: 2,3-дигидро-1H-инден-2-ил ацетат

Ацетилхлорид (87,86 г, 1119,40 ммоль) по каплям добавляли к 2,3-дигидро-1H-инден-2-олу (15 г, 111,94 ммоль) в атмосфере азота при 0°C. Реакционную смесь перемешивали при комнатной температуре в течение 16 ч. Избыток ацетилхлорида отгоняли при пониженном давлении. Остаток разбавляли этилацетатом (450 мл), промывали насыщенным водным раствором NaHCO3 (3х50 мл), насыщенным раствором соли (30 мл), высушивали над Na2SO4 и концентрировали при пониженном давлении, получая указанное в заголовке соединение (16,2 г, 82%), которое использовали в следующей стадии без дополнительной очистки.

Методика синтеза 69: 5-бром-2,3-дигидро-1H-инден-2-ил ацетат

К раствору 2,3-дигидро-1H-инден-2-ил ацетата (16 г, 90,09 ммоль) в сухом ДМФА (160 мл), охлажденному до 0°C, порциями добавляли N-бромсукцинимид (17,8 г, 99,09 ммоль) и смесь перемешивали в течение 48 ч при комнатной температуре. Затем реакционную смесь разбавляли этилацетатом (450 мл), промывали ледяной водой (4×50 мл) и насыщенным раствором соли (100 мл), высушивали над Na2SO4 и концентрировали при пониженном давлении. Остаток очищали колоночной хроматографией, используя в качестве элюента смесь этилацетат/гексан (силикагель, 100-200 меш), и получая указанное в заголовке соединение (9,8 г, 42%).

Методика синтеза 70: 5-бром-2,3-дигидро-1H-инден-2-ол

К раствору 5-бром-2,3-дигидро-1H-инден-2-ил ацетата (9 г, 35,43 ммоль) в ТГФ (100 мл), охлажденному до 0°C, по каплям добавляли раствор NaOH (2,12 г, 53,15 ммоль) в воде (25 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 ч. После этого реакционную смесь концентрировали, нейтрализовывали 6н раствором HCl и экстрагировали этилацетатом (2×50 мл). Объединенные органические соли промывали насыщенным раствором соли (50 мл), высушивали над Na2SO4 и концентрировали при пониженном давлении. Остаток очищали колоночной хроматографией (этилацетат/гексан, силикагель 100-200 меш), получая указанное в заголовке соединение (4,5 г, 56%).

Методика синтеза 71: 5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-2,3-дигидро-1H-инден-2-ол

К раствору 5-бром-2,3-дигидро-1H-инден-2-ола (4,5 г, 21,22 ммоль) в диоксане (54 мл) добавляли бис(пинаколато)диборон (6,44 г, 25,47 ммоль) и ацетат калия (8,3 г, 84,90 ммоль). Реакционную смесь продували аргоном в течение 20 мин и затем добавляли Pd(dppf)Cl2 (0,755 г, 1,061 ммоль). Реакционную смесь перемешивали при 110°C в течение 4 ч, затем давали остыть до комнатной температуры, фильтровали через небольшой слой целита® и промывали этилацетатом (100 мл). Фильтрат концентрировали при пониженном давлении. Остаток очищали колоночной хроматографией (этилацетат/гексан, силикагель 100-200 меш), получая указанное в заголовке соединение (3,8 г, 69%).

Синтез соединений формулы (I)

Пример 1: метил 4-амино-3-хлор-6-(1,3-дигидробензофуран-5-ил)-5-фторпиколинат

Трет-бутил нитрит (1,3 мл, 11 ммоль, 1,5 экв.) при перемешивании добавляли к раствору ангидрида пероксибензойной кислоты (36 мг, 0,15 ммоль, 0,02 экв.), диборон бис(пинаколового) эфира (1,9 г, 7,4 ммоль, 1,0 экв.) и 1,3-дигидроизобензофуран-5-амина (1,0 г, 7,4 ммоль, 1,0 экв.) в ацетонитриле (25 мл) при 23°C. Полученный гомогенный оранжевый/коричневый раствор перемешивали при 23°C в течение 3 ч. Добавляли активированный уголь и черную смесь подвергали фильтрованию под действием силы тяжести и концентрировали на роторном испарителе, получая 1,9 г темно-коричневого масла, которое по результатам спектроскопии1H ЯМР содержало 2-(1,3-дигидроизобензофуран-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан примерно 30% чистоты.

К неочищенному 2-(1,3-дигидроизобензофуран-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолану (ориентировочное количество 570 мг, 2,3 ммоль, 1,1 экв.) добавляли метил 4-амино-3,6-дихлор-5-фторпиколинат (500 мг, 2,1 ммоль, 1,0 экв.), дихлор[бис(трифенилфосфино)]палладий (II) (150 мг, 0,21 ммоль, 0,10 экв.) и карбонат натрия (240 мг, 2,3 ммоль, 1,1 экв.) и затем смесь 1:1 вода:ацетонитрил (7,0 мл) при 23°C. Полученную темно-оранжевую/коричневую смесь нагревали до 85°C и перемешивали в течение 4 ч. Охлажденную реакционную смесь разбавляли водой (150 мл) и экстрагировали дихлорметаном (4х70 мл). Объединенные органические слои высушивали (сульфат магния), фильтровали под действием силы тяжести и концентрировали на роторном испарителе. Остаток очищали колоночной хроматографией на обращенной фазе (градиент 5% ацетонитрила - 100% ацетонитрила), получая указанное в заголовке соединение в виде оранжевого порошка (150 мг, 22%): т.пл. 153-156°C; ИК (пленка чистого вещества) 3468 (средний), 3334 (сильный), 3205 (средний), 2952 (средний), 2856 (средний), 1735 (сильный), 1623 (сильный), 1579 (слабый) см-1;1H ЯМР (400 МГц, CDCl3) δ 7,81-7,86 (м, 2H), 7,33 (д, J=8 Гц, 1H), 5,16 (уш.д, J=4 Гц, 1H), 4,89 (уш.с, 2H), 3,97 (с, 3H); ESIМС m/z 323 [(M+H)+].

Пример 2 (реакция сочетания 1): метил 4-амино-6-(бензо[d][1,3]диоксол-4-ил)-3-хлор-5-фторпиколинат

Метил 4-амино-3,6-дихлор-5-фторпиколинат (1,5 г, 6,28 ммоль), 2-(бензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан (2,024 г, 8,16 ммоль), фторид калия (0,875 г, 15,06 ммоль; примечание - в аналогичных примерах использовался фторид цезия) и хлорид бис(трифенилфосфин)палладия(II) (0,440 г, 0,628 ммоль) смешивали в ацетонитриле (13 мл) и воде (4,5 мл). Реакционную смесь подвергали воздействию микроволнового излучения при 110°C в плотно закрытом сосуде в течение 20 мин, следя за температурой в боковой части сосуда с помощью внешнего ИК-сенсора. Охлажденную реакционную смесь распределяли между этилацетатом и водой. Органическую фазу высушивали и концентрировали на 1,2 г силикагеля. Смесь наносили на верхнюю часть колонки с силикагелем и элюировали продукт градиентной системой растворителей 7-60% гексан/этилацетат, получая указанное в заголовке соединение в виде твердого белого вещества (1,4 г, 68,7%): т.пл. 146-148°C1H ЯМР (400 МГц, CDCl3) δ 7,16-7,09 (м, 1H), 6,98-6,85 (м, 2H), 6,01 (с, 2H), 4,91 (уш.с, 2H), 3,98 (с, 3H); ESIМС m/z 325 [(M+H)+].

Методика синтеза, использованная в этом примере, обозначена в таблице 2 как "реакция сочетания 1".

Пример 3: (реакция сочетания 2): метил 4-амино-3-хлор-6-(2,2,4-трифторбензо[d][1,3]диоксол-5-ил)пиколинат

Метил 4-ацетамидо-3,6-дихлорпиколинат (600 мг, 2,3 ммоль), фторид цезия (690 мг, 4,5 ммоль), 4,4,5,5-тетраметил-2-(2,2,4-трифторбензо[d][1,3]диоксол-5-ил)-1,3,2-диоксаборолан (980 мг, 3,0 ммоль) и хлорид бис(трифенилфосфин)палладия(II) (110 мг, 0,16 ммоль) смешивали в комбинированном растворителе 1:1 ацетонитрил-вода (6 мл) и нагревали при 115°C в течение 30 мин с помощью микроволнового излучения (Biotage Initiator), следя за температурой боковой части сосуда с помощью внешнего ИК-сенсора. Смесь встряхивали с водой (10 мл) и этилацетатом (25 мл). Органическую фазу промывали насыщенным раствором NaCl (5 мл), высушивали над Na2SO4 и упаривали. Остаток очищали хроматографией на оксиде кремния, элюируя градиентом 5-30% этилацетат-гексан и получая твердое вещество, которое затем очищали высокоэффективной жидкостной хроматографией на обращенной фазе, элюируя смесью 70/30/0,10 объем/объем/объем ацетонитрил/вода/уксусная кислота, и получая 250 мг амида. Полученный продукт растворяли в метаноле (10 мл), осторожно обрабатывали ацетилхлоридом (2 мл) и нагревали до кипения с обратным холодильником в течение 1 ч. После охлаждения летучие компоненты удаляли в вакууме и остаток перемешивали с этилацетатом (15 мл) и насыщенным раствором NaHCO3 (5 мл) в течение 15 мин. Органическую фазу промывали насыщенным раствором NaCl 95 мл), высушивали над Na2SO4 и упаривали в вакууме, получая указанное в заголовке соединение в виде твердого белого вещества (195 мг, 24%): т.пл. 153-155°C;1H ЯМР (400 МГц, CDCl3) δ 7,77 (дд, J=8,6, 7,1 Гц, 1H), 7,14 (д, J=1,9 Гц, 1H), 6,97 (дд, J=8,6, 0,9 Гц, 1H), 4,87 (с, 2H), 4,00 (с, 3H);19F ЯМР (376 МГц, CDCl3) δ -49,37 (с), -138,91 (с); ESI МС m/z 361 ([M+H]+), 359 ([M-H]-).

Методика синтеза, использованная в этом примере, обозначена в таблице 2, как "реакция сочетания 2".

Пример 4 (реакция сочетания 3): метил 4-амино-3-хлор-6-(2,3-дигидробензофуран-6-ил)-5-фторпиколинат

3,3',3"-фосфинтриилтрибензолсульфонат (0,209 г, 0,418 ммоль), фторид калия (0,365 г, 6,28 ммоль), метил 4-амино-3-хлор-6-(2,3-дигидробензофуран-6-ил)-5-фторпиколинат, диацетоксипалладий (0,047 г, 0,209 ммоль) и 2-(2,3-дигидробензофуран-6-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан (0,541 г, 2,196 ммоль) смешивали в 5-мл микроволновом сосуде. Смешивали воду (3 части, объем: 3 мл) и ацетонитрил (1 часть, объем: 1 мл) и добавляли в микроволновый сосуд. Реакционный сосуд плотно закрывали и помещали в микроволновый реактор Biotage Initiator на 6 мин при температуре 150°C, причем следили за температурой боковой части сосуда при помощи внешнего ИК-сенсора. После охлаждения продукт осаждался в виде твердого вещества. Дополнительный материал присутствовал в ацетонитрильной смеси. Растворители вымывали водой и высушивали, получая метил 4-амино-3-хлор-6-(2,3-дигидробензофуран-6-ил)-5-фторпиколинат в виде белого твердого вещества (250 мг, 37%): т.пл. 150-154°C;1H ЯМР (400 МГц, CDCl3) δ 7,42 (дт, J=7,7, 1,6 Гц, 1H), 7,33 (с, 1H), 7,28 (с, 1H), 4,88 (с, 2H), 4,62 (кв., J=8,4 Гц, 2H), 3,98 (д, J=3,0 Гц, 3H), 3,31-3,18 (м, 2H);13C ЯМР (101 МГц, CDCl3) δ 164,99, 160,32, 147,23, 144,65, 140,38, 140,24, 134,32, 134,26, 128,69, 124,76, 121,43, 121,37, 114,64, 109,71, 109,65, 71,39, 52,90, 29,69; ESI МС m/z 233 ([M+H]+), 231 ([M-H]-).

Методика синтеза, использованная в этом примере, обозначена в таблице 2, как "реакция сочетания 3".

Пример 5 (реакция сочетания 4): метил 4-амино-3-хлор-6-(2,2,5-трифторбензо[d][1,3]диоксол-4-ил)пиколинат

Метил 4-ацетамидо-3-хлор-6-(триметилстаннил)пиколинат (710 мг, 1,8 ммоль) и 2,2,5-трифтор-4-йодбензо[d][1,3]диоксол (500 мг, 1,7 ммоль) смешивали в сухом N,N-диметилформамиде (7 мл) и вытесняли воздух током азота в течение 25 мин. Добавляли хлорид бис(трифенилфосфин)палладия (II) (120 мг, 0,17 ммоль) и йодид меди (I) (32 мг, 0,17 ммоль) и смесь нагревали до 80°C в течение 5 ч. Полученную смесь объединяли с этилацетатом (30 мл) и водой (15 мл), отделяли органическую фазу и промывали ее водой (10 мл), насыщенным раствором NaCl (10 мл), высушивали и упаривали. Остаток очищали хроматографией на оксиде кремния градиентом 0-50% этилацетат-гексан, получая 115 мг амидного интермедиата. Полученный продукт растворяли в метаноле (25 мл), обрабатывали ацетилхлоридом (3-4 мл) и нагревали до 60°C в течение 2 ч. Летучие вещества удаляли в вакууме и остаток перемешивали с насыщенным раствором NaHCO3 (10 мл) и этилацетатом (20 мл) в течение 30 мин. Органическую фазу отделяли, промывали насыщенным раствором NaCl (5 мл), высушивали (Na2SO4) и упаривали, получая указанное в заголовке соединение в виде твердого белого вещества (130 мг, 20%):1H ЯМР (400 МГц, ДМСО-d6) δ 7,52 (дд, J=8,9, 4,0 Гц, 1H), 7,22 (дд, J=11,0, 9,0 Гц, 1H), 7,06 (д, J=1,4 Гц, 1H), 6,99 (с, 2H), 3,88 (с, 3H);19F ЯМР (376 МГц, ДМСО-d6) δ -48,09, -121,60; ESI МС m/z 361 ([M+H]+), 359 ([M-H]-).

Методика синтеза, использованная в этом примере, обозначена в таблице 2, как "реакция сочетания 4".

Пример 6 (реакция сочетания 5): метил 4-амино-5-фтор-3-метокси-6-(2,2,6-трифторбензо[d][1,3]диоксол-5-ил)пиколинат

К смеси метил 4-амино-6-хлор-5-фтор-3-метоксипиколината (300 мг, 1,279 ммоль) в ацетонитриле (1 мл) и воде (3 мл) добавляли фторид калия (149 мг, 2,56 ммоль), ацетат палладия (II) (28,7 мг, 0,128 ммоль) и тетрагидрат натриевой соли трис(3-сульфонатофенил)фосфина (150 мг, 0,256 ммоль). Затем реакционную смесь нагревали при 120°C в течение 20 мин в микроволновом реакторе. После этого охлажденную реакционную смесь разбавляли дихлорметаном и промывали водой. Разделяли фазы и органическую фазу концентрировали. Остаток очищали хроматографией на обращенной фазе (100g C18), элюируя смесью ацетонитрил-вода 50/50 (0,1% трифторуксусной кислоты), получая указанное в заголовке соединение в виде не совсем белого твердого вещества (251 мг, 52,5%).

Методика синтеза, использованная в этом примере, обозначена в таблице 2, как "реакция сочетания 5".

Пример 7: метил 4-амино-6-(7-бром-2,2-дифторбензо[d][1,3]диоксол-4-ил)-3-хлор-5-фторпиколинат

Метил 4-амино-3-хлор-6-(2,2-дифтор-7-(триметилсилил)бензо[d][1,3]диоксол-4-ил)-5-фторпиколинат (400 мг, 0,92 ммоль) перемешивали в 1,2-дихлорэтане (5 мл), обрабатывали бромом (1,0 г, 6,5 ммоль) и перемешивали при 20-25°C в течение 4 ч. Раствор перемешивали с 10% раствором NaHSO3 (30 мл) и экстрагировали этилацетатом (35 мл). Органическую фазу промывали насыщенным раствором NaCl (5 мл), высушивали (Na2SO4) и упаривали, получая указанное в заголовке соединение в виде белого твердого вещества (370 мг, 92%): т.пл. 168-170°C;1H ЯМР (400 МГц, CDCl3) δ 7,35 (м, 1H), 5,02 (с, 1H), 3,99 (с,3H);19F ЯМР (376 МГц, CDCl3) δ -49,23, -137,58; ESI МС m/z 439 ([M+H]+), 437 ([M-H]-).

Пример 8: метил 4-амино-3-хлор-6-(2,2-дифтор-7-йодбензо-[d][1,3]диоксол-4-ил)-5-фторпиколинат

Метил 4-амино-3-хлор-6-(2,2-дифтор-7-(триметилсилил)бензо [d][1,3]диоксол-4-ил)-5-фторпиколинат (400 мг, 0,92 ммоль) в 1,2-дихлорэтане (5 мл) обрабатывали монохлоридом йода (900 мг, 5,5 ммоль) и перемешивали в течение 20 ч при 20°C. Смесь объединяли с 10 масс.% раствором NaHSO3 (30 мл) и этилацетатом (30 мл). Водную фазу экстрагировали этилацетатом (15 мл) и объединенные органические фазы промывали насыщенным раствором NaCl (10 мл), высушивали (Na2SO4) и упаривали, получая указанное в заголовке соединение в виде белого твердого вещества (430 мг, 96%): т.пл. 156-159°C;1H ЯМР (400 МГц, CDCl3) δ 7,50 (д, J=8,6 Гц, 1H), 7,23 (д, J=8,6 Гц, 1H), 5,02 (с, 2H), 3,99 (с, 3H);19F ЯМР (376 МГц, CDCl3) δ -49,22, -137,49; ESI МС m/z 487 ([M+H]+), 485 ([M-H]-).

Пример 9 (гидролиз): 4-амино-6-(бензо[d][1,3]диоксол-4-ил)-3-хлор-5-фторпиколиновая кислота

В реакционный сосуд, содержащий метил 4-амино-6-(бензо[d][1,3]диоксол-4-ил)-3-хлор-5-фторпиколинат (0,150 г, 0,462 ммоль), добавляли метанол (9,24 мл) и 2н гидроксид натрия (0,924 мл, 1,848 ммоль). Реакционную смесь перемешивали в течение ночи при комнатной температуре, нейтрализовывали до pH3 2н. HCl и концентрировали в токе азота. Образовавшийся осадок отделяли фильтрованием, промывали водой и высушивали, получая указанное в заголовке соединение в виде белого твердого вещества (0,107 г, 74,6%): т.пл.171-173°C;1H ЯМР (400 МГц, ДМСО-d6) δ 7,08-7,00 (м, 2H), 6,99-6,93 (м, 2H), 6,93 (уш.с, 2H), 6,06 (с, 2H); ESI МС m/z 311,2 ([M+H]+), 309,1 ([M-H]-).

Методика синтеза, использованная в этом примере, обозначена в таблице 2, как "гидролиз".

Пример 10: получение метил 4-амино-3-хлор-5-фтор-6-(2-гидрокси-2,3-дигидро-1H-инден-5-ил)пиколината

Смесь 5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-2,3-дигидро-1H-инден-2-ол (3,8 г, 14,61 ммоль), исходное соединение Head B (3,4 г, 14,61 ммоль) и фторид цезия (CsF, 4,44г, 29,23 ммоль) в смеси растворителей ацетонитрил/вода (75 мл:25 мл) продували аргоном в течение 20 мин и затем добавляли Pd(PPh3)2Cl2 (1,0 г, 1,46 ммоль). Реакционную смесь перемешивали при 110°C в течение 2 ч, затем охлаждали до комнатной температуры, фильтровали через небольшой слой целита® и промывали этилацетатом (100 мл). Фильтрат концентрировали при пониженном давлении. Остаток очищали колоночной хроматографией (этилацетат/гексан и силикагель 100-200 меш), получая указанное в заголовке соединение (1,8 г, 36%).

Пример 11: получение метил 4-амино-3-хлор-5-фтор-6-(2-фтор-2,3-дигидро-1H-инден-5-ил)пиколината

К охлажденному до -78°C раствору метил 4-амино-3-хлор-5-фтор-6-(2-гидрокси-2,3-дигидро-1H-инден-5-ил)пиколината (0,5 г, 1,48 ммоль) в дихлорметане (15 мл) добавляли Deoxo-Fluor® (1,9 г, 8,92 ммоль). Реакционной смеси давали нагреться до комнатной температуры и перемешивали в течение 16 ч. Затем смесь разбавляли дихлорметаном (15 мл), промывали холодным насыщенным раствором NaHCO3 (2×10 мл), насыщенным раствором соли (10 мл), высушивали над Na2SO4 и концентрировали при пониженном давлении. Остаток очищали колоночной хроматографией (этилацетат/гексан и силикагель 230-400 меш), получая указанное в заголовке соединение (0,145 г, 28%):1H ЯМР (300 МГц, ДМСО-d6) δ 7,71 (с, 1H), 7,64 (д, J=8,1 Гц, 1H), 7,41 (д, J=7,8 Гц, 1H), 6,92 (с, 2H), 5,64-5,45 (м, 1H), 3,88 (с, 3 H), 3,39-3,09 (м, 4H); ESI МС m/z 339 ([M+H]+).

Пример 12: получение метил 4-амино-3-хлор-5-фтор-6-(2-оксо-2,3-дигидро-1H-инден-5-ил)пиколината

К охлажденному до 0°C раствору метил 4-амино-3-хлор-5-фтор-6-(2-гидрокси-2,3-дигидро-1H-инден-5-ил)пиколинату (1,0 г, 2,97 ммоль) в дихлорметане (25 мл) добавляли хлорхромат пиридиния (1,27 г, 5,95 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 6 ч, фильтровали через небольшой слой целита® и промывали дихлорметаном (50 мл). Фильтрат высушивали над Na2SO4 и концентрировали при пониженном давлении. Остаток очищали колоночной хроматографией (этилацетат/гексан и силикагель 100-200 меш), получая указанное в заголовке соединение (0,5 г, 56%): ESI МС m/z 335 ([M+H]+).

Пример 13: получение метил 4-амино-3-хлор-6-(2,2-дифтор-2,3-дигидро-1H-инден-5-ил)-5-фторпиколината

К охлажденному до -78°C раствору метил 4-амино-3-хлор-5-фтор-6-(2-оксо-2,3-дигидро-1H-инден-5-ил)пиколината (0,5 г, 1,497 ммоль) в дихлорметане (50 мл) добавляли трифторид диэтиламиносеры (DAST; 1,4 г, 8,98 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 ч. Затем смесь разбавляли дихлорметаном (50 мл), промывали ледяным насыщенным раствором NaHCO3 (2×10 мл), насыщенным раствором соли, высушивали над Na2SO4 и концентрировали при пониженном давлении. Остаток очищали колоночной хроматографией (этилацетат/гексан и силикагель 100-200 меш), получая указанное в заголовке соединение (0,105 г, 18%):1H ЯМР (400 МГц, ДМСО-d6) δ 7,77 (д, J=6 Гц, 2H), 7,31 (д, J=8,4 Гц, 1H), 4,89 (с, 2H), 3,98 (с, 3H), 3,52-3,43 (м, 4H); ESI МС m/z 357 ([M+H]+).

Таблица 2
Номер, структура, методика получения и внешний вид соединения
№ соед.СтруктураВнешн. видПолучено согласно примеруПредшественник(и)1
Не совсем белое тверд. в-воРеакция сочетания 1Head H; 2-(2,2-дифторбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
2
Белое твердое в-воРеакция сочетания 1Head H;
4,4,5,5-тетраметил-2-
(2,2,6-трифтор-1,3-бензодиоксол-5-ил)- 1,3,2-диоксаборолан

3
СмолаГидролизСоединение 2
4
Белое твердое в-воРеакция сочетания 1Head H;
4,4,5,5-тетраметил-2-
(2,2,4-трифторбензо[d] [1,3]диоксол-5-ил)-1,3,2-диоксаборолан
5
Белое твердое в-воГидролизСоединение 4

6
Белое твердое в-воРеакция сочетания 1Head B; (2,2-дифторбензо[d] [1,3]диоксол-5-ил)бороновая кислота
7
Белое твердое в-воГидролизСоединение 6
8
Желтое полутвердое в-воРеакция сочетания 3Head B; 2-(2,2-диметилбензо[d] [1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

9
Белое твердое в-воРеакция сочетания 1Head B; 4,4,5,5-тетраметил-2-(2,2,6-трифторбензо[d] [1,3]диоксол-5-ил)-1,3,2-диоксаборолан
10
Белое твердое в-воРеакция сочетания 1Head B; 4,4,5,5-тетраметил-2-(2,2,4-трифтор-1,3-бензодиоксол-5-ил)-1,3,2-диоксаборолан
11
Белое твердое в-воГидролизСоединение 10

12
Белое твердое в-воРеакция сочетания 1Head B; 2-(6-хлор-2,2-дифтор-1,3-бензодиоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
13
Белое твердое в-воГидролизСоединение 9
14
Белое твердое в-воРеакция сочетания 1Head B; 2-(7-метокси-1,3-бензодиоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

15
Белое твердое в-воГидролизСоединение 14
16
Желто-коричневое твердое в-воРеакция сочетания 3Head B; 2-(6-фторбензо[d] [1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
17
Белое твердое в-воРеакция сочетания 1Head B; 4,4,5,5-тетраметил-2-(2,2,7-трифтор-1,3-бензодиоксол-5-ил)-1,3,2-диоксаборолан

18
Белое твердое в-воГидролизСоединение 17
19
Коричневое твердое в-воГидролизСоединение 8
20
Белое твердое в-воРеакция сочетания 1Head B; 4,4,5,5-тетраметил-2-(2-метилбензо[d] [1,3]диоксол-5-ил)-1,3,2-диоксаборолан

21
Белое твердое в-воРеакция сочетания 1Head O; 4,4,5,5-тетраметил-2-(2,2,6-трифторбензо[d] [1,3]диоксол-5-ил)-1,3,2-диоксаборолан
22
Желто-коричневое твердое в-воРеакция сочетания 5Head F; 4,4,5,5-тетраметил-2-(2,2,6-трифторбензо[d] [1,3]диоксол-5-ил)-1,3,2-диоксаборолан
23
Желто-коричневое твердое в-воГидролизСоединение 22

24
Не совсем белое тверд. в-воРеакция сочетания 1Head F; 2-(2,2-дифторбензо[d] [1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
25
Желто-коричневое твердое в-воГидролизСоединение 24
26
Желто-коричневое твердое в-воРеакция сочетания 3Head F; 2-(6-фторбензо[d] [1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
27
Желто-коричневое твердое в-воРеакция сочетания 1Head G; 4,4,5,5-тетраметил-2-(2,2,6-трифтор-1,3-бензодиоксол-5-ил)-1,3,2-диоксаборолан

28
Белое твердое веществоГидролизСоединение 27
29
Не совсем белое твердое веществоРеакция сочетания 1Head G; 2-(2,2-дифторбензо[d] [1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
30
Коричневое маслоГидролизСоединение 29
31
Желто-коричневое твердое в-воРеакция сочетания 3Head G; 2-(6-фторбензо[d] [1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

32
Оранжевое твердое в-воРеакция сочетания 1Head L; 4,4,5,5-тетраметил-2-(2,2,6-трифторбензо[d] [1,3]диоксол-5-ил)-1,3,2-диоксаборолан
33
Белое твердое в-воРеакция сочетания 1Head M; 2-(4-хлор-2,2-дифторбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
34
Белое твердое в-воГидролизСоединение 33

35
Белое твердое в-воРеакция сочетания 1Head M; 2-(2,2-дифтор-4-метил-1,3-бензодиоксол-5-ил)5,5-диметил-1,3,2-диоксаборинан
36
Белое твердое в-воГидролизСоединение 35
37
Белое твердое в-воРеакция сочетания 2Как описано в тексте

38
Белое твердое в-воРеакция сочетания 1Head A; 2-(2,2-дифтор-6-метокси-1,3-бензодиоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
39
Белое твердое в-воГидролизСоединение 38
40
Белое твердое в-воРеакция сочетания 1Head A; 2-(6-хлор-2,2-дифтор-1,3-бензодиоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

41
Белое твердое в-воГидролизСоединение 37
42
Белое твердое в-воГидролизСоединение 32
43
Белое твердое в-воРеакция сочетания 1Head A; 4,4,5,5-тетраметил-2-(2,2,7-трифтор-1,3-бензодиоксол-5-ил)- 1,3,2-диоксаборолан

44
Белое твердое в-воГидролизСоединение 43
45
Светло-желтое твердое в-воРеакция сочетания 1Head L; 2-(6-фторбензо[d] [1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
46
ПенаРеакция сочетания 4Head K; 2,2,4,6-тетрафтор-5-иодбензо[d][1,3]диоксол

47
Белое твердое в-воРеакция сочетания 1Head A; 2-(2,2-дифтор-4-метоксибензо[d] [1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
48
Белое твердое в-воРеакция сочетания 4Head K; 4,6-дифтор-5-иодбензо[d][1,3]диоксол
49
Белое твердое в-воРеакция сочетания 1Head D; 2-(2,2-дифторбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
50
Белое твердое в-воРеакция сочетания 1Head D; 4,4,5,5-тетраметил-2-(2,2,6-трифторбензо[d][1,3]диоксол-5-ил)-1,3,2-диоксаборолан

51
Белое твердое в-воГидролизСоединение 50
52
Не совсем белое твердое веществоГидролизСоединение 1
53
Белое хлопьевидное твердое в-воРеакция сочетания 1Head D; 4,4,5,5-тетраметил-2-(2,2,4-трифторбензо[d][1,3]диоксол-5-ил)-1,3,2-диоксаборолан
54
Белое твердое в-воГидролизСоединение 53

55
Темно-коричневое твердое в-воРеакция сочетания 3Head E; 2-(2,2-диметилбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
56
Белое твердое в-воРеакция сочетания 1Head E; 4,4,5,5-тетраметил-2-(2,2,6-трифтор-1,3-бензодиоксол-5-ил)-1,3,2-диоксаборолан
57
Белое твердое в-воГидролизСоединение 56

58
Белое твердое в-воРеакция сочетания 1Head E; 4,4,5,5-тетраметил-2-(2,2,4-трифторбензо[d][1,3]диоксол-5-ил)-1,3,2-диоксаборолан
59
Белое твердое в-воГидролизСоединение 58
60
Белое твердое в-воРеакция сочетания 1Head E; 2-(2,2-дифторбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

61
Белое твердое в-воГидролизСоединение 60
62
Белое твердое в-воРеакция сочетания 1Head C; 2-(2,2-дифторбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
63
Белое твердое в-воГидролизСоединение 62

64
Желто-коричневое твердое в-воРеакция сочетания 5Head C; 4,4,5,5-тетраметил-2-(2,2,6-трифторбензо[d][1,3]диоксол-5-ил)-1,3,2-диоксаборолан
65
Желто-коричневое твердое в-воРеакция сочетания 1Head C; 4,4,5,5-тетраметил-2-(2,2,4-трифтор-1,3-бензодиоксол-5-ил)-1,3,2-диоксаборолан
66
Белое твердое в-воГидролизСоединение 65

67
Темно-коричневое твердое в-воРеакция сочетания 3Head C; 2-(2,2-диметилбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
68
Белое твердое в-воГидролизСоединение 64
69
Белое твердое в-воРеакция сочетания 1Head C; 2-(2,2-диметилбензо[d][1,3]диоксол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

70
Белое твердое в-воРеакция сочетания 1Head H; 2-(7-хлор-2,2-дифторбензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
71
Не совсем белое твердое в-воРеакция сочетания 1Как описано в тексте
72
Белое твердое в-воГидролизКак описано в тексте

73
Белое твердое в-воРеакция сочетания 1Head B; 2-(2,2-дифторбензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
74
Белое твердое в-воГидролизСоединение 73
75
Белое твердое в-воРеакция сочетания 1Head B; 2-(7-хлор-2,2-дифторбензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

76
Белое твердое в-воРеакция сочетания 1Head B; 4,4,5,5-тетраметил-2-(2,2,7-трифтор-1,3-бензодиоксол-4-ил)-1,3,2-диоксаборолан
77
Белое твердое в-воГидролизСоединение 76
78
Белое твердое в-во7Как описано в тексте

79
Белое твердое в-во8Как описано в тексте
80
Белое твердое в-воГидролизСоединение 78
81
Белое твердое в-воГидролизСоединение 79

82
Белое твердое в-воГидролизСоединение 75
83
Белое твердое в-воРеакция сочетания 1Head B; 2-(7- фторбензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
84
Белое твердое в-воРеакция сочетания 1Head A; (2,2-дифторбензо[d][1,3]диоксол-4-ил)-бороновая кислота
85
Белое твердое в-воГидролизСоединение 84

86
Белое твердое в-воРеакция сочетания 1Head A; 2-(7-хлор-2,2-дифторбензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
87
Белое твердое в-воГидролизСоединение 86
88
Белое твердое в-воРеакция сочетания 1Head A; 4,4,5,5-тетраметил-2-(2,2,7-трифтор-1,3-бензодиоксол-4-ил)-1,3,2-диоксаборолан

89
Белое твердое в-воГидролизСоединение 88
90
Белое твердое в-воРеакция сочетания 4Head K; 2,2,5-трифтор-4-йодбензо[d][1,3]диоксол
91
Белое твердое в-воГидролизСоединение 90

92
Коричневое твердое в-воРеакция сочетания 1Head M; 2-(7-фторбензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
93
Прозрачное стекловидное в-воРеакция сочетания 1Head M; 2-(бензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
94
Белое твердое в-воРеакция сочетания 1Head D; 2-(7-хлор-2,2-дифторбензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

95
Не совсем белое твердое в-воРеакция сочетания 1Head C; 2-(7-хлор-2,2-дифторбензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
96
Белое твердое в-воГидролизСоединение 75
97
Светло-желтое твердое в-воРеакция сочетания 1Head C; 2-(7-фторбензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан

98
Белое твердое в-воРеакция сочетания 1Head C; 2-(бензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
99
Белое твердое в-воРеакция сочетания 1Head C; 2-(2,2-дифторбензо[d][1,3]диоксол-4-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
100
Белое твердое в-воРеакция сочетания 3Как описано в тексте

101
Белое твердое в-воГидролизСоединение 100
102
Белое твердое в-воРеакция сочетания 1Head B; 2-(2,3-дигидробензофуран-7-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
103
Оранжевый порошок1Как описано в тексте
104
Оранжевый порошокГидролизСоединение 103

105
Желто-коричневое твердое в-воРеакция сочетания 1Head B; 2-(бензо[d][1,3]оксатиол-5-ил)-4,4,5,5-тетраметил-1,3,2-диоксаборолан
106
Белое твердое в-воРеакция сочетания 4Head K; 2,2,3,3,7-пентафтор-6-йод-2,3-дигидробензофуран
107
Бледно-желтый порошокРеакция сочетания 1Head B; 1-метил-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)индолин

108
Желтый порошокГидролизСоединение 107
110
Не совсем белое твердое в-во11метил 4-амино-3-хлор-5-фтор-6-(2-гидрокси-2,3-дигидро-1H-инден-5-ил)пиколинат
111
Не совсем белое твердое в-во13метил 4-амино-3-хлор-5-фтор-6-(2-оксо-2,3-дигидро-1H-инден-5-ил)пиколинат

Таблица 3
Аналитические данные для соединений таблицы 1
Соединение номерТ.пл. (°C)1H ЯМР1141–1441H ЯМР (CDCl3) δ 7,41 (ддд, J=5,0, 2,1, 1,1 Гц, 2H), 7,13 (дд, J=8,3, 0,4 Гц, 1H), 5,35 (с, 2H), 3,97 (с, 3H)2161–1631H ЯМР (400 МГц, CDCl3) δ 7,14 (д, J=5,5 Гц, 1H), 6,92 (д, J=8,2 Гц, 1H), 5,36 (с, 2H), 3,97 (с, 3H)3145–146
(с разложением)
1H ЯМР (400 МГц, ДМСO-d6) δ 7,68 (д, J=8,7 Гц, 1H), 7,58 (д, J=5,7 Гц, 1H), 7,08 (с, 2H)
41H ЯМР (ДМСO-d6) δ 3,87 (с, 3H), 7,22 (с, 2H), 7,33 (дд, J=8,4, 6,4 Гц, 1H), 7,43 (д, J=8,5 Гц, 1H)51H ЯМР (ДМСO-d6) δ 7,12 (с, 2H), 7,33 (дд, J=8,4, 6,4 Гц, 1H), 7,44 (д, J=8,5 Гц, 1H), 13,81 (с, 1H)6137–1391H ЯМР (400 МГц, ДМСO-d6) δ 7,78 (с, 1H), 7,68 (д, J=8,5 Гц, 1H), 7,55 (д, J=8,5 Гц, 1H), 7,05 (с, 2H), 3,88 (с, 3H)7143–1441H ЯМР (400 МГц, ДМСO-d6) δ 13,52 (с, 1H), 7,82 (с, 1H), 7,75-7,67 (м, 1H), 7,54 (д, J=8,6 Гц, 1H), 6,92 (с, 2H)

81H ЯМР (400 МГц, CDCl3) δ 7,41 (дт, J=8,2, 1,7 Гц, 1H), 7,34 (т, J=1,5 Гц, 1H), 6,80 (д, J=8,2 Гц, 1H), 4,85 (с, 2H), 3,98 (с, 3H), 1,70 (с, 6H)9151–1531H ЯМР (400 МГц, CDCl3) δ 7,31 (д, J=5,5 Гц, 1H), 6,93 (дд, J=8,3, 5,1 Гц, 1H), 4,97 (с, 2H), 3,98 (с, 3H)1091–931H ЯМР (400 МГц, CDCl3) δ 7,35 (дд, J=8,4, 6,2 Гц, 1H), 7,01 (дд, J=8,4, 0,8 Гц, 1H), 4,98 (с, 2H), 3,98 (д, J=4,0 Гц, 3H)11142–143
(с разложением)
1H ЯМР (400 МГц, ДМСO-d6) δ 13,70 (с, 1H), 7,49-7,40 (м, 1H), 7,05 (с, 1H)
12146–1481H ЯМР (400 МГц, CDCl3) δ 7,20 (с, 1H), 7,18 (с, 1H), 4,99 (с, 2H), 3,97 (с, 3H)13161–162
(с разложением)
1H ЯМР (400 МГц, ДМСO-d6) δ 7,70 (д, J=9,0 Гц, 1H), 7,62 (д, J=5,7 Гц, 1H), 7,00 (с, 2H)
14153–1551H ЯМР (400 МГц, CDCl3) δ 7,21-7,16 (м, 1H), 7,13 (т, J=1,6 Гц, 1H), 6,03 (с, 2H), 4,88 (с, 2H), 3,99 (с, 3H), 3,96 (с, 3H)15173–174
(с разложением)
1H ЯМР (400 МГц, ДМСO-d6) δ 13,51 (с, 1H), 7,14 (с, 1H), 7,05 (с, 1H), 6,86 (с, 2H), 6,08 (с, 2H), 3,88 (с, 3H)
161H ЯМР (400 МГц, CDCl3) δ 7,01 (д, J=5,8 Гц, 1H), 6,67 (д, J=9,2 Гц, 1H), 6,04 (д, J=12,7 Гц, 2H), 4,92 (с, 2H), 3,98 (с, 3H)17135–1371H ЯМР (400 МГц, CDCl3) δ 7,62 (м, 1H), 7,57 (д, J=0,7 Гц, 1H), 4,95 (с, 2H), 4,00 (с, 3H)

18157–1591H ЯМР (400 МГц, ДМСO-d6) δ 13,34 (с, 1H), 7,73 (с, 1H), 7,68 (м, 1H), 6,97 (с, 2H)191H ЯМР (400 МГц, ДМСO-d6) δ 7,32-7,25 (м, 1H), 7,21 (с, 1H), 6,89 (д, J=8,2 Гц, 1H), 1,67 (с, 6H)20101–1031H ЯМР (400 МГц, CDCl3) δ 7,44 (дт, J=8,2, 1,7 Гц, 1H), 7,38 (т, J=1,5 Гц, 1H), 6,84 (д, J=8,3 Гц, 1H), 6,32 (кв., J=4,9 Гц, 1H), 4,86 (с, 2H), 3,98 (с, 3H), 1,69 (д, 4,9Гц, 3H)21231–2321H ЯМР (400 МГц, ДМСO-d6) δ 7,70 (д, J=9,0 Гц, 1H), 7,60 (д, J=5,7 Гц, 1H), 6,95 (с, 2H), 3,86 (с, 3H)221471H ЯМР (400 МГц, ацетон-d6) δ 7,48 (д, J=5,6 Гц, 1H), 7,39 (д, J=8,8 Гц, 1H), 6,01 (с, 2H), 3,93 (с, 3H), 3,90 (с, 3H)231561H ЯМР (400 МГц, ацетон-d6) δ 7,62 (д, J=5,6 Гц, 1H), 7,40 (д, J=8,9 Гц, 1H), 6,18 (с, 1H), 3,97 (с, 3H)24125,5–127,01H ЯМР (CDCl3) δ 7,73-7,65 (м, 2H), 7,13 (дд, J=8,2, 0,6 Гц, 1H), 4,58 (с, 2H), 3,99 (с, 3H), 3,96 (с, 3H)25132–1341H ЯМР (CDCl3) δ 7,62 (дт, J=8,4, 1,5 Гц, 1H), 7,57 (т, J=1,4 Гц, 1H), 7,19 (д, J=8,4 Гц, 1H), 4,83 (с, 2H), 4,06 (с, 3H)261H ЯМР (400 МГц, CDCl3) δ 7,01 (д, J=5,8 Гц, 1H), 6,66 (д, J=9,2 Гц, 1H), 6,01 (с, 2H), 4,57 (с, 2H), 3,96 (с, 3H), 3,97 (с, 3H)

27118–1201H ЯМР (400 МГц, CDCl3) δ 7,33 (д, J=5,5 Гц, 1H), 6,96-6,86 (м, 2H), 5,73 (дд, J=11,6, 1,3 Гц, 1H), 5,59 (дд, J=18,1, 1,4 Гц, 1H), 4,76 (с, 2H), 3,92 (с, 3H),28162–165
(с разложением)
1H ЯМР (400 МГц, ДМСO-d6) δ 13,17 (с, 1H), 7,68 (д, J=9,0 Гц, 1H), 7,61 (д, J=5,7 Гц, 1H), 6,83-6,71 (м, 1H), 6,49 (с, 2H), 5,57 (дд, J=6,2, 1,2 Гц, 1H), 5,54 (с, 1H)
29112–1141H ЯМР (CDCl3) δ 7,74 (ддд, J=6,1, 3,1, 1,3 Гц, 2H), 7,14 (дд, J=8,3, 0,4 Гц, 1H), 6,90 (дд, J=18,1, 11,6 Гц, 1H), 5,72 (дд, J=11,6, 1,4 Гц, 1H), 5,58 (дд, J=18,1, 1,4 Гц, 1H), 4,73 (с, 2H), 3,93 (с, 3H)301H ЯМР (CDCl3) δ 7,72-7,65 (м, 1H), 7,62 (т, J=1,3 Гц, 1H), 7,29-7,22 (м, 1H), 7,20 (д, J=8,3 Гц, 1H), 5,82 (дд, J=11,7, 1,4 Гц, 1H), 5,62 (дд, J=18,4, 1,4 Гц, 1H), 5,02 (с, 2H)311H ЯМР (400 МГц, CDCl3) δ 7,04 (д, J=5,8 Гц, 1H), 6,91 (дд, J=18,1, 11,5 Гц, 1H), 6,66 (д, J=9,2 Гц, 1H), 6,02 (с, 2H), 5,71 (дд, J=11,5, 1,4 Гц, 1H), 5,58 (дд, J=18,1, 1,4 Гц, 1H), 4,71 (с, 2H), 3,91 (с, 3H)32150–1511H ЯМР (400 МГц, ацетон-d6) δ 7,84 (д, J=6,2 Гц, 1H), 7,39 (д, J=1,7 Гц, 1H), 7,35 (д, J=10,2 Гц, 1H), 6,34 (с, 1H), 3,93 (с, 3H)

33145–1461H ЯМР (400 МГц, CDCl3) δ 7,37 (д, J=8,3 Гц, 1H), 7,05 (д, J=8,4 Гц, 1H), 6,99 (с, 1H), 4,91 (с, 2H), 3,98 (с, 3H)34153–1551H ЯМР (400 МГц, ДМСO-d6) δ 13,57 (с, 1H), 7,51 (д, J=8,4 Гц, 1H), 7,42 (д, J=8,4 Гц, 1H), 6,98 (с, 1H), 6,81 (с, 2H)35116–1181H ЯМР (400 МГц, CDCl3) δ 7,10 (д, J=8,2 Гц, 1H), 6,96-6,89 (м, 1H), 6,76 (с, 1H), 4,86 (с, 2H), 3,97 (с, 3H)36172–1741H ЯМР (400 МГц, ДМСO-d6) δ 13,46 (с, 1H), 7,30 (д, J=8,2 Гц, 1H), 7,22 (д, J=8,3 Гц, 1H), 6,83 (с, 1H), 6,71 (с, 2H), 2,27 (с, 3H)37153–1551H ЯМР (400 МГц, CDCl3) δ 7,77 (дд, J=8,6, 7,1 Гц, 1H), 7,14 (д, J=1,9 Гц, 1H), 6,97 (дд, J=8,6, 0,9 Гц, 1H), 4,87 (с, 2H), 4,00 (с, 3H)381H ЯМР (400 МГц, CDCl3) δ 7,60 (с, 1H), 7,29 (с, 1H), 6,76 (с, 1H), 4,77 (с, 2H), 3,98 (с, 3H), 3,82 (с, 3H)39165–1661H ЯМР (400 МГц, ДМСO-d6) δ 7,66 (с, 1H), 7,39 (с, 1H), 7,27 (с, 1H), 6,70 (с, 2H), 3,85 (с, 3H)40127–1291H ЯМР (400 МГц, CDCl3) δ 7,33 (с, 1H), 7,16 (с, 1H), 7,03 (с, 1H), 4,91 (с, 2H), 3,98 (с, 3H)41173–1751H ЯМР (400 МГц, ДМСO-d6) δ 7,73 (дд, J=8,6, 7,3 Гц, 1H), 7,39 (д, J=8,6 Гц, 1H), 7,16 (д, J=1,9 Гц, 1H), 6,83 (с, 2H)42173–1741H ЯМР (400 МГц, ДМСO-d6) δ 13,54 (с, 1H), 7,84 (д, J=6,3 Гц, 1H), 7,66 (д, J=10,2 Гц, 1H), 7,20 (д, J=1,9 Гц, 1H), 6,82 (с, 2H)

43176–771H ЯМР (400 МГц, CDCl3) δ 7,75 (д, J=1,8 Гц, 1H), 7,71 (дд, J=11,5, 1,5 Гц, 1H), 6,79 (с, 2H), 3,90 (с, 3H)44182–183
(с разложением)
1H ЯМР (400 МГц, ДМСO-d6) δ 13,32 (с, 1H), 7,77 (м, 2H), 7,25 (с, 1H), 6,76 (с, 2H)
451H ЯМР (400 МГц, CDCl3) δ 7,89 (дд, J=8,2, 1,7 Гц, 1H), 7,72 (д, J=1,7 Гц, 1H), 6,77 (д, J=8,2 Гц, 1H), 5,49 (с, 2H), 4,01 (с, 3H), 1,69 (с, 6H)461H ЯМР (400 МГц, CDCl3) δ 6,95 (с, 1H), 6,78 (дд, J=22,3, 11,8 Гц, 1H), 5,01 (с, 2H), 3,99 (с, 3H)47115–1161H ЯМР (400 МГц, CDCl3) δ 7,51 (д, J=8,5 Гц, 1H), 7,14 (с, 1H), 6,81 (д, J=8,5 Гц, 1H), 4,80 (с, 2H), δ 4,02 (с, 3H), 3,98 (с, 3H)48135–1401H ЯМР (400 МГц, CDCl3) δ 6,83 (с, 1H), 6,53 (дд, J=8,7, 1,3 Гц, 1H), 6,06 (д, J=7,1 Гц, 2H), 4,85 (с, 2H), 3,98 (с, 3H)49158–1601H ЯМР (CDCl3) δ 7,21 (дд, J=1,6, 0,4 Гц, 1H), 7,16 (дд, J=8,2, 1,6 Гц, 1H), 7,10 (дд, J=8,2, 0,4 Гц, 1H), 4,85 (с, 2H), 3,96 (с, 3H), 2,17 (с, 3H)50162–1651H ЯМР (CDCl3) δ 7,17 (д, J=5,6 Гц, 1H), 6,90 (д, J=8,2 Гц, 1H), 4,86 (с, 2H), 3,96 (с, 3H), 2,09 (д, J=2,8 Гц, 3H)51125,5-127,01H ЯМР (CDCl3) δ 7,12 (д, J=5,6 Гц, 1H), 6,97 (д, J=8,3 Гц, 1H), 5,12 (с, 2H), 2,13 (д, J=2,6 Гц, 3H)

52150–1531H ЯМР (CDCl3) δ 7,18-7,16 (м, 3H), 5,11 (с, 2H), 2,23 (с, 3H)53153,5–155,01H ЯМР (400 МГц, CDCl3) δ 7,17 (дд, J=8,3, 6,4 Гц, 1H), 6,97 (дд, J=8,3, 0,8 Гц, 1H), 4,87 (с, 2H), 3,95 (с, 3H), 2,09 (д, J=2,3 Гц, 3H)54139–1471H ЯМР (400 МГц, ДМСO-d6) δ 7,39 (д, J=8,4 Гц, 1H), 7,25 (дд, J=8,4, 6,6 Гц, 1H), 6,53 (с, 2H), 2,00 (д, J=1,7 Гц, 3H)55132–1391H ЯМР (400 МГц, CDCl3) δ 7,89 (дд, J=8,2, 1,7 Гц, 1H), 7,72 (д, J=1,7 Гц, 1H), 6,77 (д, J=8,2 Гц, 1H), 5,49 (с, 2H), 4,00 (с, 3H), 1,69 (с, 6H)561H ЯМР (400 МГц, CDCl3) δ 7,73 (д, J=6,0 Гц, 1H), 6,92 (д, J=9,3 Гц, 1H), 5,65 (с, 2H), 4,01 (с, 3H)57178–1791H ЯМР (400 МГц, ДМСO-d6) δ 8,15-7,87 (м, 1H), 7,81 (д, J=6,1 Гц, 1H), 7,63 (д, J=9,7 Гц, 2H)581H ЯМР (ДМСO-d6) δ 3,92 (с, 3H), 7,40 (дд, J=8,7, 0,9 Гц, 1H), 7,65 (с, 1H), 7,81 (дд, J=8,7, 7,1 Гц, 1H), 8,16 (с, 1H)591H ЯМР (ДМСO-d6) δ 7,41 (д, J=8,6 Гц, 1H), 7,46-7,75 (м, 1H), 7,82 (дд, J=8,7, 7,0 Гц, 1H), 7,89-8,41 (м, 1H), 14,13 (с, 1H)601H ЯМР (ДМСO-d6) δ 3,93 (с, 3H), 7,53 (д, J=8,5 Гц, 1H), 8,07 (д, J=1,8 Гц, 1H), 8,15 (дд, J=8,5, 1,7 Гц, 1H)611H ЯМР (ДМСO-d6) δ 7,53 (д, J=8,5 Гц, 1H), 7,87 (с, 1H), 8,10 (д, J=1,6 Гц, 1H), 8,16 (дд, J=8,5, 1,7 Гц, 1H), 14,07 (с, 1H)

621781H ЯМР (400 МГц, ДМСO-d6) δ 8,11 (дд, J=8,5, 1,7 Гц, 1H), 8,06-8,01 (м, 1H), 7,52-7,47 (м, 1H), 7,42 (с, 2H), 3,90 (с, 3H), 3,74 (с, 3H)63144–1451H ЯМР (400 МГц, ДМСO-d6) δ 8,13 (дд, J=8,5, 1,6 Гц, 1H), 8,08 (д, J=1,5 Гц, 1H), 7,47 (д, J=8,5 Гц, 1H), 7,15 (с, 2H), 3,76 (с, 3H)64131–1321H ЯМР (400 МГц, CDCl3) δ 7,67 (д, J=6,0 Гц, 1H), 6,91 (д, J=9,3 Гц, 1H), 5,48 (с, 2H), 4,00 (с, 3H), 3,94 (с, 3H)65109–1111H ЯМР (400 МГц, CDCl3) δ 7,74 (дд, J=8,5, 6,8 Гц, 1H), 6,93 (дд, J=8,5, 0,9 Гц, 1H), 5,45 (с, 2H), 4,00 (с, 3H), 3,94 (с, 3H)66125–126 (с разложением)1H ЯМР (400 МГц, ДМСO-d6) δ 7,77 (дд, J=8,6, 7,1 Гц, 1H), 7,37 (дд, J=8,6, 0,7 Гц, 3H), 3,76 (с, 3H)67159–1641H ЯМР (400 МГц, CDCl3) δ 7,83 (дд, J=8,2, 1,6 Гц, 1H), 7,70 (д, J=1,6 Гц, 1H), 6,76 (д, J=8,2 Гц, 1H), 5,28 (с, 2H), 4,00 (с, 3H), 3,90 (с, 3H), 1,69 (с, 6H)68119–120 (с разложением)1H ЯМР (400 МГц, ДМСO-d6) δ 7,78 (д, J=6,1 Гц, 1H), 7,59 (д, J=9,6 Гц, 1H), 7,38 (с, 2H), 3,76 (с, 3H)691H ЯМР (ДМСO-d6) δ 3,74 (с, 3H), 3,88 (с, 3H), 6,12 (с, 2H), 6,98 (д, J=10,3 Гц, 1H), 7,26 (д, J=6,4 Гц, 1H), 7,37 (с, 2H)70161–1641H ЯМР (400 МГц, CDCl3) δ 7,21 (м, 2H), 5,39 (с, 2H), 3,98 (с, 3H)71146–1481H ЯМР (400 МГц,CDCl3) δ 7,16-7,09 (м, 1H), 6,98-6,85 (м, 2H), 6,01 (с, 2H), 4,91 (уш. с, 2H), 3,98 (с, 3H)

72171–1731H ЯМР (400 МГц, ДМСO-d6) δ 7,08-7,00 (м, 2H), 6,99-6,94 (м, 1H), 6,93 (уш. с, 2H), 6,06 (с, 2H),73119–1211H ЯМР (400 МГц, CDCl3) δ 7,43 (дд, J=7,9, 1,4 Гц, 1H), 7,19 (т, J=7,9 Гц, 1H), 7,14 (дд, J=8,0, 1,4 Гц, 1H), 5,01 (уш. с, 2H), 3,99 (с, 3H)74153–1561H ЯМР (300 МГц, ДМСO-d6) δ 7,55 (дд, J=7,9, 1,3 Гц, 1H), 7,46 (дд, J=8,1, 1,2 Гц, 1H), 7,36 (т, J=8,0 Гц, 1H), 7,10 (уш. с, 2H)75160–1621H ЯМР (400 МГц, CDCl3) δ 7,41 (д, J=8,8 Гц, 1H), 7,20 (д, J=8,8 Гц, 1H), 5,01 (с, 2H), 3,99 (с, 3H)76157–1591H ЯМР (400 МГц, ДМСO-d6) δ 7,50 (дд, J=9,1, 4,9 Гц, 1H), 7,40 (дд, J=17,0, 7,7 Гц, 1H), 7,19 (с, 2H), 3,88 (с, 3H)77161–1621H ЯМР (400 МГц, ДМСO-d6) δ 13,45 (д, J=233,5 Гц, 1H), 7,52 (дд, J=9,1, 4,9 Гц, 1H), 7,40 (дд, J=17,4, 8,2 Гц, 1H), 7,12 (д, J=21,0 Гц, 2H)78151–1531H ЯМР (400 МГц, CDCl3) δ 7,35 (с, 1H), 7,34 (с, 1H), 5,02 (с, 2H), 3,99 (с, 3H)79156–1591H ЯМР (400 МГц, CDCl3) δ 7,50 (д, J=8,6 Гц, 1H), 7,23 (д, J=8,6 Гц, 1H), 5,02 (с, 2H), 3,99 (с, 3H)80168–1701H ЯМР (400 МГц, ДМСO-d6) δ 13,84 (с, 1H), 7,60 (д, J=8,7 Гц, 1H), 7,45 (д, J=8,7 Гц, 1H), 7,11 (с, 2H)

81169–170
(с разложением)
1H ЯМР (400 МГц, ДМСO-d6) δ 13,54 (д, J=165,0 Гц, 1H), 7,70 (д, J=8,5 Гц, 1H), 7,28 (д, J=8,5 Гц, 1H), 7,09 (с, 2H)
82173–1751H ЯМР (400 МГц, ДМСO-d6) δ 13,71 (с, 1H), 7,51 (с, 1H), 7,12 (с, 1H)83159–1611H ЯМР (400 МГц, CDCl3) δ 7,11 (дд, J=8,9, 4,9 Гц, 1H), 6,79 (м, 1H), 6,09 (с, 2H), 4,91 (с, 2H), 3,98 (с, 3H)841291H ЯМР (300 МГц, CDCl3) δ 7,93 (дд, J=8,1, 1,4 Гц, 1H), 7,34 (с, 1H), 7,15 (т, J=8,0 Гц, 1H), 7,07 (дд, J=7,9, 1,4 Гц, 1H), 4,96 (с, 2H), 4,01 (с, 3H)851701H ЯМР (300 МГц, ДМСO-d6) δ 7,88 (дд, J=8,2, 1,2 Гц, 1H), 7,48 (дд, J=8,0, 1,2 Гц, 1H), 7,39 (с, 1H), 7,33 (т, J=8,1 Гц, 1H), 6,93 (с, 2H)86172–1741H ЯМР (400 МГц,CDCl3) δ 7,97 (д, J=8,9 Гц, 1H), 7,33 (с, 1H), 7,17 (д, J=8,9 Гц, 1H), 4,92 (с, 2H), 4,01 (с, 3H)87182–1841H ЯМР (400 МГц, ДМСO-d6) δ 13,58 (с, 1H), 7,91 (д, J=9,0 Гц, 1H), 7,45 (д, J=8,9 Гц, 1H), 7,35 (с, 1H), 6,89 (с, 2H)88142–1431H ЯМР (400 МГц, CDCl3) δ 7,98 (дд, J=9,3, 5,0 Гц, 1H), 7,30 (с, 1H), 7,00 (дд, J=11,3, 7,1 Гц, 1H), 4,92 (с, 2H), 4,01 (с, 3H)89168–1691H ЯМР (400 МГц, ДМСO-d6) δ 13,46 (д, J=154,8 Гц, 1H), 7,91 (дд, J=9,3, 5,1 Гц, 1H), 7,36 (т, J=9,5 Гц, 1H), 7,32 (с, 1H), 6,89 (с, 2H)

901H ЯМР (400 МГц, ДМСO-d6) δ 7,52 (дд, J=8,9, 4,0 Гц, 1H), 7,22 (дд, J=11,0, 9,0 Гц, 1H), 7,06 (д, J=1,4 Гц, 1H), 6,99 (с, 2H), 3,88 (с, 3H)91163–1641H ЯМР (400 МГц, ДМСO-d6) δ 13,51 (с, 1H), 7,52 (дд, J=9,0, 4,0 Гц, 1H), 7,22 (дд, J=11,1, 9,0 Гц, 1H), 7,02 (д, J=1,4 Гц, 1H), 6,88 (с, 2H)92175–1781H ЯМР (400 МГц, CDCl3) δ 7,71 (дд, J=9,1, 5,1 Гц, 1H), 7,40 (с, 1H), 6,77 (т, J=9,3 Гц, 1H), 6,13 (с, 2H), 4,79 (с, 2H), 4,00 (с, 3H)9340–501H ЯМР (400 МГц, CDCl3) δ 7,71 (дд, J=8,1, 1,3 Гц, 1H), 7,47 (с, 1H), 6,93 (т, J=7,9 Гц, 1H), 6,86 (дд, J=7,7, 1,3 Гц, 1H), 6,06 (с, 2H), 4,78 (с, 2H), 4,00 (с, 3H)94181–1861H ЯМР (400 МГц, CDCl3) δ 7,20 (кв., J=8,6 Гц, 2H), 4,90 (с, 2H), 3,97 (с, 3H), 2,12 (с, 3H)95154–1561H ЯМР (400 МГц, CDCl3) δ 7,91 (д, J=8,9 Гц, 1H), 7,13 (д, J=8,9 Гц, 1H), 5,42 (с, 2H), 4,02 (с, 3H), 3,93 (с, 3H)96187–1891H ЯМР (400 МГц, ДМСO-d6) δ 7,93 (д, J=8,9 Гц, 1H), 7,45 (д, J=9,0 Гц, 1H), 7,42 (уш. с, 2H), 3,76 (с, 3H)97206–2081H ЯМР (400 МГц, CDCl3) δ 7,65 (дд, J=9,2, 5,1 Гц, 1H), 6,74 (т, J=9,3 Гц, 1H), 6,19 (с, 2H), 5,40 (с, 2H), 4,01 (с, 3H), 3,92 (с, 3H)

98142–1441H ЯМР (400 МГц, CDCl3) δ 7,64 (дд, J=6,8, 2,7 Гц, 1H), 6,89 (м, 2H), 6,11 (с, 2H), 5,40 (с, 2H), 4,01 (с, 3H), 3,93 (с, 3H)99129–1311H ЯМР (400 МГц, CDCl3) δ 7,91 (дд, J=7,4, 2,1 Гц, 1H), 7,13 (м, 2H), 5,45 (с, 2H), 4,02 (с, 3H), 3,94 (с, 3H)100150–1541H ЯМР (400 МГц, CDCl3) δ 7,42 (дт, J=7,7, 1,6 Гц, 1H), 7,33 (с, 1H), 7,28 (с, 1H), 4,88 (с, 2H), 4,62 (кв., J=8,4 Гц, 2H), 3,98 (д, J=3,0 Гц, 3H), 3,31-3,18 (м, 2H)101166–1681H ЯМР (400 МГц, ДМСO-d6) δ 7,33 (кв., J=7,8 Гц, 2H), 7,18 (с, 1H), 6,89 (д, J=16,4 Гц, 2H), 4,58 (т, J=8,7 Гц, 2H), 3,23 (т, J=8,7 Гц, 2H)102135–1381H ЯМР (300 МГц, CDCl3) δ 7,33 (д, J=7,6 Гц, 1H), 7,26 (дд, J=7,3, 1,2 Гц, 1H), 6,94 (т, J=7,5 Гц, 1H), 4,87 (с, 2H), 4,60 (т, J=8,7 Гц, 2H), 3,96 (с, 3H), 3,26 (т, J=8,7 Гц, 2H)103153–1561H ЯМР (400 МГц, CDCl3) δ 7,81-7,86 (м, 2H), 7,33 (д, J=8 Гц, 1H), 5,16 (уш. д, J=4 Гц, 1H), 4,89 (уш. с, 2H), 3,97 (с, 3H)104172–1741H ЯМР (400 МГц, ДМСO-d6) δ 13,61 (уш. с, 1H), 7,76-7,83 (м, 2H), 7,46 (д, J=8 Гц, 1H), 6,89 (уш. с, 2H), 5,08 (уш. с, 4H)105113–1151H ЯМР (400 МГц, CDCl3) δ 7,79 (м, 1H), 7,60 (дт, J=8,4, 1,8 Гц, 1H), 6,89 (д, J=8,4 Гц, 1H), 5,74 (д, J=3,7 Гц, 2H), 4,89 (с, 2H), 3,98 (д, J=7,5 Гц, 3H)

106170–1711H ЯМР (400 МГц, CDCl3) δ 7,88 (дд, J=8,1, 6,1 Гц, 1H), 7,43 (дкв., J=8,1, 1,2 Гц, 1H), 7,21 (д, J=1,7 Гц, 1H), 4,95 (с, 2H), 4,01 (с, 3H)107120–1221H ЯМР (400 МГц, CDCl3) δ 7,68-7,73 (м, 2H), 6,49 (д, J=9 Гц, 1H), 4,77 (уш. с, 2H), 3,96 (с, 3H), 3,37 (т, J=8,5 Гц, 2H), 2,99 (т, J=8,5 Гц, 2H), 2,77 (с, 3H)108161–1631H ЯМР (400 МГц, ДМСO-d6) δ 13,43 (уш. с, 1H), 7,56-7,62 (м, 2H), 6,69 (уш. с, 2H), 6,57 (д, J=9 Гц, 1H), 3,37 (т, J=8 Гц, 2H), 2,96 (т, J=8 Гц, 2H), 2,77 (с, 3H)110145-1491H ЯМР (300 МГц, ДМСO-d6) δ 7,71 (с, 1H), 7,64 (д, J=8,1 Гц, 1H), 7,41 (д, J=7,8 Гц, 1H), 6,92 (с, 2H), 5,64-5,45 (м, 1H), 3,88 (с, 3 H), 3,39-3,09 (м, 4H)111131–1341H ЯМР (400 МГц, ДМСO-d6) δ 7,77 (д, J=6 Гц, 2H), 7,31 (д, J=8,4 Гц, 1H), 4,89 (с, 2H), 3,98 (с, 3H), 3,52-3,43 (м, 4H)

Примеры гербицидной активности

Оценку гербицидной активности производили визуально по шкале от 0 до 100, где 0 означает отсутствие активности, и 100 означает гибель всех растений. В таблице 4 приведены обозначения, использованные для представления данных исследований.

Таблица 4
Соответствие между использованными обозначениями и результатами контрольных экспериментов
Обозначение% контрольных растенийA95-100B85-94C75-84Д60-74E45-59F30-44G0-29

Пример A: оценка послевсходовой гербицидной активности

Тест I послевсходовой гербицидной активности: Семена тестируемых видов получали у коммерческих поставщиков и высевали в горшки диаметром 5-дюймов, в которых находилась не содержащая почвы смесь (Metro-Mix 360®, Sun Gro Horticulture). Растения сажали за 8-12 дней (д) до применения препаратов и культивировали в теплице, оборудованной источниками дополнительного света, чтобы обеспечить период освещенности 16 ч при температуре 24-29°C. Полив горшков осуществляли с поверхности.

Приблизительно 10 миллиграммов (мг) каждого из исследуемых соединений растворяли в 1,3 мл смеси ацетон-ДМСО (97:3 объем/объем) и разбавляли 4,1 мл смеси вода-изопропанол-маслянистый концентрат (78:20:2, объем/объем/объем), содержащей 0,02% Triton X-155. Препараты подвергали последовательному разбавлению растворителем показанного выше состава, получая концентрации тестируемых соединений 1,85, 0,926, 0,462 и 0,231 миллиграммов на миллилитр (мг/мл), причем доставку препаратов осуществляли в количестве 2,7 мл/горшок (что составляло приблизительно 4,0, 2,0, 1,0 и 0,5 кг/га, соответственно). Составы наносили с использованием распылителя на сжатом воздухе DeVilbiss® при давлении 2-4 фунта на квадратный дюйм (psi). После обработки горшки возвращали в теплицу на оставшийся срок эксперимента. Осуществляли подпочвенное орошение всех горшков, необходимое для обеспечения оптимальных условий роста. Один раз в неделю осуществляли подкормку всех горшков путем подпочвенного орошения удобрением Peters Peat-Lite Special® (20-10-20).

Данные по фитотоксичности регистрировали через 10 дней после осуществления послевсходовой обработки. Оценку во всех случаях производили визуально по шкале от 0 до 100, где оценка 0 означала отсутствие активности, а оценка 100 соответствовала полной гибели растений, причем соответствие между численными значениями и обозначениями показано в таблице 4.

Некоторые из протестированных соединений, примененных количеств соединений, исследованных видов растений и результатов показаны в таблице 5.

Таблица 5
Тест I на послевсходовую гербицидную активность на примере основных широколистных и травянистых сорняков, а также культурных видов
Соед. номерНанесенное кол-во (кг действ. в-ва/га)Визуальное подавление роста (%) через 10 дней после нанесенияAVEFAECHCGHELANIPOHESEТFA34CCCCC54GGAAC514GGDGG544GGDGG714GGACG724GGAGG733,96GGACG743,96Gn/tADG

AVEFA: Овес пустой или овсюг (Avena fatua);
ECHCG: ежовник обыкновенный, петушье просо (Echinochloa crus-galli);
HELAN: подсолнечник однолетний (Helianthus annuus);
IPOHE: ипомея плющевидная (Ipomoea hederacea);
SETFA: щетинник Фабера (Setaria faberi);
kg ai/ha: килограммы действующего вещества на гектар;
n/t: не тестировалось.

Пример B: оценка предвсходовой гербицидной активности

Тест I предвсходовой гербицидной активности: Семена тестируемых видов высевали в круглые пластмассовые горшки (диаметром 5-дюймов), содержащие супесчаную почву. После высевания осуществляли подпочвенный полив всех горшков за 16 ч до применения соединений.

Соединения растворяли в смеси ацетона и ДМСО 97:3 объем/объем и разбавляли до необходимой концентрации раствором для нанесения, содержащим воду, ацетон, изопропанол, ДМСО и Agri-dex (маслянистый концентрат) в соотношении 59:23:15:1,0:1,5 объем/объем, и 0,02% w/v (масса/объем) Triton X-155, получая раствор для опрыскивания, содержащий наибольшую концентрацию действующего вещества. Полученный раствор с наибольшей концентрацией последовательно разбавляли описанным выше раствором, что позволило обеспечить доставку соединений в концентрациях 1/2X, 1/4X и 1/8X от наибольшей концентрации (что эквивалентно приблизительно 4,0, 2,0, 1,0 и 0,5 кг/га, соответственно).

Составы соединений (2,7 мл) равномерно наносили пипеткой на поверхность почвы и затем поливали водой (15 мл). После обработки горшки возвращали в теплицу на весь оставшийся срок эксперимента. Теплица была запрограммирована на период освещения примерно 15 ч, при температуре приблизительно 23-29°C днем и примерно 22-28°C ночью. Питательные вещества и воду регулярно подавали путем подпочвенного орошения, и дополнительное освещение при необходимости обеспечивалось потолочными металло-галогеновыми лампами мощностью 1000 Ватт.

Данные по гербицидному эффекту регистрировали через 14 дней поле осуществления обработки. Оценку во всех случаях производили относительно соответствующих контрольных растений по шкале от 0 до 100, где оценка 0 означала отсутствие гербицидного эффекта, а оценка 100 соответствовала гибели растений или отстутствию всходов на почве, причем соответствие между численными значениями и обозначениями показано в таблице 4.

Некоторые из протестированных соединений, примененных количеств соединений, исследованных видов растений и результатов показаны в таблице 6.

Таблица 6
Тест I на предвсходовую гербицидную активность на примере основных широколистных и травянистых сорняков, а также культурных видов
Соед. номерНанесенное кол-во (кг действ. в-ва/га)Визуальное подавление роста (%) через 14 дней после нанесенияAVEFAECHCGHELANIPOHESEТFA714FFAEG724DCAGG733,96GGACG743,96DAADEAVEFA: Овес пустой или овсюг (Avena fatua);
ECHCG: ежовник обыкновенный, петушье просо (Echinochloa crus-galli);
HELAN: подсолнечник однолетний (Helianthus annuus);
IPOHE: ипомея плющевидная (Ipomoea hederacea);
SETFA: щетинник Фабера (Setaria faberi);
kg ai/ha: килограммы действующего вещества на гектар.

Пример C: оценка послевсходовой гербицидной активности

Тест II послевсходовой гербицидной активности: семена или орешки желаемых тестируемых видов растений высаживали в посадочную смесь Sun Gro Metro-Mix® 360, которая обычно имеет pH от 6,0 до 6,8 и содержание органического вещества примерно 30 процентов, в пластмассовые горшки с площадью поверхности 64 квадратных сантиметра (см2). Если это необходимо для гарантии хорошего прорастания и получения здоровых растений, применяли обработку фунгицидами и/или другими химическими или физическими средствами. Растения выращивали в течение 7-21 дня в теплице с продолжительностью светового дня 15 часов, в которой поддерживалась температура примерно 23-29°C в течение светового дня и 22-28°C в течение ночи. Регулярно давали питательные вещества и воду, и дополнительное освещение при необходимости обеспечивалось потолочными металло-галогеновыми лампами мощностью 1000 Ватт. Растения использовались для тестирования, если они достигали стадии первого или второго настоящего листа.

Взвешенное количество каждого тестируемого соединения, которое определяли по наибольшей концентрации, которую предполагалось протестировать, помещали в 25 мл стеклянный сосуд и растворяли в 4 мл 97:3 объем/объем смеси ацетона и ДМСО, получая концентрированные растворы. Если тестируемое соединение с трудом подвергалось растворению, смесь нагревали и/или воздействовали ультразвуком. Приготовленные концентрированные растворы разбавляли 20 мл водной смеси, содержащей ацетон, воду, изопропиловый спирт, ДМСО, маслянистый концентрат Atplus 411F и ПАВ Triton® X-155 в соотношении 48,5:39:10:1,5:1,0:0,02 объем/объем, получая растворы для опрыскивания, содержащие наивысшую применяемую концентрацию. Другие концентрации получали последовательными разбавлениями 12 мл раствора максимальной концентрации раствором, содержащим 2 мл 97:3 объем/объем смеси ацетона и ДМСО, и 10 мл водной смеси, содержащей ацетон, воду, изопропиловый спирт, ДМСО, маслянистый концентрат Atplus 411F и ПАВ Triton® X-155 в соотношении 48,5:39:10:1,5:1,0:0,02 объем/объем, получая концентрации 1/2Х, 1/4Х, 1/8Х и 1/16Х от максимальной. Требуемые количества соединений выбирали на основании того, что применяемый объем 12 мл соответствовал норме расхода 187 литров на гектар (л/га). Составы соединений наносили на растительный материал с помощью распылителя Mandel с верхней головкой, снабженной насадкой 8002E, калиброванной для доставки 187 л/га на площади нанесения 0,503 кв.метра при высоте распыления 18 дюймов (43 см) над средней высотой верхушек растений. Контрольные растения аналогичным образом опрыскивали растворителем, не содержащим действующего вещества.

Обработанные препаратами и контрольные растения помещали в теплицу, как описано выше, и осуществляли подпочвенное орошение растений, чтобы предотвратить вымывание тестируемых соединений. Через 14 дней визуально определяли состояние тестовых растений по сравнению с необработанными растениями и оценивали по шкале от 0 до 100 процентов, где значение 0 соответствовало отсутствию повреждений, и значение 100 соответствовало полному уничтожению растений, причем соответствие между определенными значениями и символами, использованными для представления данных, показано в таблице 4.

Некоторые из протестированных соединений, примененных количеств соединений, исследованных видов растений и результатов показаны в таблице 7.

Таблица 7
Тест II на послевсходовую гербицидную активность на примере основных широколистных сорняков, а также культурных видов
Соед. номерНанесенное кол-во (г действ. в-ва/га)Визуальное подавление роста (%) через 14 дней после нанесенияABUTHAMAREBRSNNCHEALEPHHLHELAN135GGGGGB70GGGGGB140GGGGGB335GGGGGG70GAGGGG140GAGEGB435GGGGGG70GGGGGE140GGGGGД535GGEGGF70GGDGGF140GGDGGE635ACCABB

70ACBABB140AABAAA735BCBAAA70BABAAA140AAAAAA835AGDEAG70AEDCAE140ADCBAB935CGCBCB70BGBBBB140AGABBA1035BBCBAB70AABBAB140AABAAB1135Bn/tBAAA70Bn/tBAAA140An/tBAAA1235GGGGGG70GGGGGG140DGGGGG1335DGGDEB70CGFBCB140CGEBAB14140GGGCGB1535GGGGGG70GGGEGG140GEGCGG1635DBFEAB70DBDDAA140CABDAA1735GGGGGG70GGGGGG140GGGGGG1835GGGGGG

70GGGGGG140GGGGGE1935GBGGAG70DBEGAG140DBDGAF2035FDGGED70DAGFBC140AAFCBB2135GGGGGE70GGGGGE140GGGGGD2235GGGGFB70GGGGEB140GGGGEB2335GGGGAC70GGCGAB140GGBGAB2435GGGGCG70GGGGAG140GGGGAG2535EGCGAG70DGAGAG140CGAEAG2635GGEGAB70GGDGAA140GBCGAA2735GGGGGF70GGGGGC140GGGGGB2835GGGGAB70GGGGAB140DGDGAA3035EGEGDG70CGDGCG

140CGCGBB3135GBGGAE70GBGGAB140EAEGAB3235BGDAGC70BEDADC140BCCADC3335DDDCGC70CCDCDB140CADCDB3435EBCCEC70DACCDB140CABCDB3535GBFGGD70CAEDGB140CADBGA3635GAGGGC70GAFEGC140GAEEGB3735ABBAAG70AAAAAF140AAAAAC3835GGGGGG70GDGGGG140GDGGGD4035GGGGGG70GAGGGG140GAGGGG4135DADBAG70CACBAD140CACBAD4235BAABAE70BAABAD140BAABAC

4435GGGGGG70GGGGGG140GGGGGG4535AACBCD70AAAABD140AAAAAC4635BAAAFG70AAAADF140AAAABD4735GGDFGF70FCDFGF140DBDEGE4835BBAAAG70AAAAAE140AAAAAD4935GGGGGB70GGGFGB140FGGBGA5235GGGGGB70GGGGGA140GGGGGA5535CEGEAE70CBGDAD140CAGCAC5635GGGGDB70GGGGAB140GGGGAB5735GGGGGE70GGGGDB140GBGGAA5835GGGAAC70GEGAAC140CADAAC5935GEDCAD

70GBBBAC140DABBAC6035FGEDCC70DFDCCC140CEDBBC6135EGDDBD70DFBDAD140DFCCAC6235EGEGAB70BGEGAC140BGDGAA6335BGDGAB70DFCGAB140BDCGAB6435GGGGCG70GGGGBD140GGGGAC6635CADEAC70CACBAB140BABAAA6735GGGGDG70GGGGAG140GGGGAG6835GGGGCF70GGGGAE140GGGGAD6935GGCGGG70GGCGDE140GGAGCD7035EADCGB70CADBGA140CACAGA7135DDFAGB70CABAGA

140AABAGA280AAAAGA7235CACAGA70AAAAGA140AAAAGA280AAAAGA7335CABAGC70CAAAGB140BAAAGA7435GACBGC70FABAGC140EAAAGB7535BACAGA70AABAGA140AAAAGA7635DADBGB70CACBGB140BABAGB7735FACBGB70DABAGA140CAAAGA7835BADAGA70BACAGA140BACAGA7935DADBGB70CADBGB140CADBGB8035DABAGB70CABAGB140BABAGB8135GACBGB70DABBGB140CAABGB8235FAAAGB

70DAAAGB140CAAAGA8335BAFAGB70BAAAGA140AAAAGA8435EADBGG70DACBGF140CABAGF8635CACAGC70BACAGB140BABAGB8735CADAGC70BACAGC140BABAGC8835DADBGF70BADBGD140BACAGD8935GABAGD70CABAGD140CAAAGC9035DAGBGG70CAGAGG140BADAGG9135DAGAGG70CAEAGG140CADAGG9235DAFAGD70BADBGD140BACAGC9335GGGDGE70GGFCGD140EDDAGC9435FAGCGD70EAGBGB

140EAGBGA9535EAEAGA70CAEAGA140CADAGA9635CAGAGA70DACAGA140BABAGA9735GGGDGD70GGGBGC140GGGDGB9835GGGEGG70GGGDGF140GFGDGD9935GGGDGC70GGGCGB140GGGBGB10035ECGAAD70BAGAAD140AAGAAC10135CAGAGB70BABAGB140AAAAFB10235Gn/tGAGC70Gn/tGAGB140En/tGAGB10335GGGEGC70GGGBGC140GGGAGC10435GGGEGE70GGGBGC140GGGBGC10535GGGFDB70GGFFCB140GEDDBA

10635EFGGEG70CFGGDG140CDGECG280BCGCCF107140DGGBAG108140GGGDGD110140CAGCDBABUTH: канатник Теофраста (Abutilon theophrasti);
AMARE: амарант колосистый (Amaranthus retroflexus);
BRSNN: масличный рапс, канола (Brassica napus);
CHEAL: марь белая (Chenopodium album);
EPHHL: молочай разнолистный (Euphorbia heterophylla);
HELAN: подсолнечник однолетний (Helianthus annuus);
g ai/ha: граммы действующего вещества на гектар;
n/t: не тестировалось.

Таблица 8
Тест II на послевсходовую гербицидную активность на примере основных травянистых и осоковых сорняков, а также культурных видов
Соед. номерНанесенное кол-во
(г действ. в-ва/га)
Визуальное подавление роста (%) через 14 дней после нанесения
CYPESECHCGSEТFAORYSATRZASZEAMX135GEGGGD70GDEGGD140GDEGGD335GGGGGG70GGGGGG140GGGGGG435GGGGGG70GGGGGG140GGGGGG535GGGGGG

70GGGGGG140GGGGGG635AADFEB70AACEDB140AABEDB735AAAFEA70AAAFDA140AAADDA835AABGGA70AAAGFA140AAAFFA935ABEGFD70ABDGED140AACGDC1035AACGED70AAAGDC140AAAGDC1135GBCGDD70AABGDD140AAAFCC1235GGGGGG70GGGGGG140GGGGGG1335ECCGED70CACGDD140ABBGDC14140GGGGGG1535GGGGGG70GGGGGG140GGGGGG1635GDDGGF70EDDGFE140ECDGEC1735Gn/tn/tGGG

70Gn/tn/tGGG140Gn/tn/tGGD1835GEEGGG70GDEGEF140GDDGED1935ABGGGD70ABGGGD140AAGGGD2035EDEGGF70CCCFGE140BBBFGD2135GGGGGG70GGGGGG140GGDGGE2235AGn/tGGG70AGn/tGED140AEn/tGDC2335GCDGED70EACGED140EACGDD2435ADGGGD70ABGGGC140AAGGFC2535ABEGED70ABDFEC140AADDDC2635GEGGGE70GDGGGE140GCGGGD2735GGGGGG70GGGGGG140GGGGGF2835ADGGGD70ACEGGD

140ACDGFC3035GCGGGE70ACGGGD140ACGGGC3135GGGGGG70GDGGGF140GCGGGE3235ADn/tGED70ACn/tGDD140ACn/tGDC3335An/tGGGD70n/tn/tGGGD140An/tEGGC3435Gn/tCGED70Gn/tCGDD140Gn/tCGDD3535GGGGGG70FGGGGG140AGGGGF3635Gn/tGGGG70Gn/tFGGG140Gn/tEGGG3735AADGGD70AAAGGC140AAAGGB3835GGGGGG70GGGGGG140GGGGGG4035GGn/tGGG70GGn/tGGG140GGn/tGGE4135GCCGFD70GBBGFC140GABGEC

4235AADFDD70AACFDC140AACFDC4435GDGGGG70GDGGGG140GCGGGG4535FCDEFE70FCDDED140DBBDDC4635AEGGGG70ADGGFE140ABGGEC4735GGGGGG70GGGGGG140GGGGGG4835GCGFGF70GCDEFD140FBCDDC4935GGGGGF70GGGGFD140GGGGFD5235GEGGGD70GDGGFD140GCEGFD5535GCCGGD70GCBGGD140GCBGGD5635GCDGGE70ECCGFD140EACGFC5735GBEGGG70GAGGGF140GAEGFE5835DCFGGE

70DBEGGD140DAEGGC5935GCEGGD70GCDGGD140Bn/tDGGD6035CDFGED70BCDGDC140BBCGDB6135GBDGDn/t70GBCECn/t140EBBDCn/t6235ABGGGA70ABFGGA140AADGGA6335An/tCGEA70AAAGEA140AAAGEA6435FGGGGF70DEEGFE140BCCGFC6635GACFED70AACFDD140AABFDC6735GGGGGG70GEEGGD140ECDGGD6835GDDGGE70GDDGED140GCDGEC6935GGGGGG70GGGGGG140GGGGGG7035GGGGGn/t70GGGGGn/t

140GGGGGn/t7135GGGGGG70GGGGGG140FGGGGG280EGGGGG7235GGGGGG70GGGGGG140GGGGGG280GGGGGG7335GGGGGG70EGGGGG140EGGGGG7435GGGGGn/t70GGGGGn/t140GGGGGn/t7535GGGGGA70GGGGGA140EGGGGA7635GGGGFG70FGGGEG140FGGGDG7735GGGGEG70GGGGDG140GGGGDG7835GGGGGD70GGGGGD140GGGGGD7935GGGGGG70GGGGGG140GGGGGG8035GGGGGE70GGGGGD140GGGGGD8135GGGGGG

70GGGGGG140GGGGGG8235GGGGDE70FGGFDD140EGGFCD8335GGGGGG70GGGGGG140GGGGGG8435GGGGGn/t70GGGGGn/t140GGGGGn/t8635DGGGGB70DGGGGB140DGGGGA8735GGGGGG70GGGGGG140GGGGGG8835FGGGGG70DGGGEG140CGGGDG8935GGGGGG70GGGGGG140GGGGGG9035GGGGGG70GGGGGG140GGGGGG9135GGGGGG70GGGGGG140GGGGGG9235GGGGGG70GGGGGG140GGGGGG9335GGGGGG70GGGGGG

140GGGGGG9435GGGGGn/t70GGGGGn/t140GGGGGn/t9535GGGGGG70EGGGGG140EGGGGG9635GGGGGF70GGGGFD140GGGGED9735GGGGGG70GGGGGG140GGGGGG9835GGGGGG70GGGGGG140GGGGGG9935GGGGGG70GGGGGG140GGGGGG10035GEGGGG70GCGGGA140GBGGGA10135GDn/tGGG70GDn/tGGG140GCn/tGGG10235GGGGGG70GGGGGG140GGGGGG10335GGGGGG70GGGGGG140GGGGGG10435GGGGGG70GGGGGG140GGGGGG

10535GEGGGG70GDGGGG140GCFGGG10635GGGGGG70GGGGGG140GGGGGG280GGGGGG107140GGGGGG108140GCGGGG110140EGGGGGECHCG: ежовник обыкновенный, петушье просо (Echinochloa crus-galli);
CYPES: сыть съедобная (Cyperus esculentus);
ORYSA: рис (Oryza sativa);
SETFA: щетинник Фабера (Setaria faberi);
TRZAS: пшеница, яровая (Triticum aestivum);
ZEAMX: маис, кукуруза (Zea mays);
g ai/ha: граммы действующего вещества на гектар;
n/t: не тестировалось.

Пример D: оценка послевсходовой гербицидной активности в посадках пшеницы и ячменя

Тест III послевсходовой гербицидной активности: семена желаемых тестируемых видов растений высаживали в посадочную смесь Sun Gro Metro-Mix® 360, которая обычно имеет pH от 6,0 до 6,8 и содержание органического вещества примерно 30 процентов, в пластмассовые горшки с площадью поверхности 103,2 квадратных сантиметра (см2). Если это необходимо для гарантии хорошего прорастания и получения здоровых растений, применяли обработку фунгицидами и/или другими химическими или физическими средствами. Растения выращивали в течение 7-36 дней (д) в теплице с продолжительностью светового дня примерно 14 часов (ч), в которой поддерживалась температура примерно 18°C в течение светового дня и 17°C в течение ночи. Регулярно подавали питательные вещества и воду, и дополнительное освещение при необходимости обеспечивалось потолочными металло-галогеновыми лампами мощностью 1000 Ватт. Растения использовались для тестирования, когда они достигали стадии второго или третьего настоящего листа.

Взвешенное количество каждого тестируемого соединения, которое определяли по наибольшей концентрации, которую предполагалось протестировать, помещали в 25 мл стеклянный сосуд и растворяли в 4 мл 97:3 объем/объем смеси ацетона и ДМСО, получая концентрированные растворы. Если тестируемое соединение с трудом подвергалось растворению, смесь нагревали и/или воздействовали ультразвуком. Приготовленные концентрированные растворы разбавляли 20 мл водной смеси, содержащей ацетон, воду, изопропиловый спирт, ДМСО, маслянистый концентрат Agri-Dex и ПАВ X-77 в соотношении 48:39:10:1,5:1,5:0,02 объем/объем, получая растворы для опрыскивания, содержащие наивысшую применяемую концентрацию. Другие концентрации получали последовательными разбавлениями 12 мл раствора максимальной концентрации раствором, содержащим 2 мл 97:3 объем/объем смеси ацетона и ДМСО, и 10 мл водной смеси, содержащей ацетон, воду, изопропиловый спирт, ДМСО, маслянистый концентрат Agri-Dex и ПАВ X-77 в соотношении 48:39:10:1,5:1,5:0,02 объем/объем, получая концентрации 1/2Х, 1/4Х, 1/8Х и 1/16Х от максимальной. Требуемые количества соединений выбирали на основании того, что применяемый объем 12 мл соответствовал норме расхода 187 литров на гектар (л/га). Составы соединений наносили на растительный материал с помощью распылителя Mandel с верхней головкой, снабженной насадкой 8002E, калиброванной для доставки 187 л/га на площади нанесения 0,503 кв. метра при высоте распыления 18 дюймов (43 см) над средней высотой верхушек растений. Контрольные растения аналогичным образом опрыскивали растворителем, не содержащим действующего вещества.

Обработанные препаратами и контрольные растения помещали в теплицу, как описано выше, и осуществляли подпочвенное орошение растений, чтобы предотвратить вымывание тестируемых соединений. Через 21 дней визуально определяли состояние тестовых растений по сравнению с необработанными растениями и оценивали по шкале от 0 до 100 процентов, где значение 0 соответствовало отсутствию повреждений, и значение 100 соответствовало полному уничтожению растений, причем соответствие между определенными значениями и символами, использованными для представления данных, показано в таблице 4.

Применяя хорошо известный пробит-анализ, который описан J.Berkson в Journal of the American Statistical Society, 48, 565 (1953) и D.Finney в "Probit Analysis" Cambridge University Press (1952), можно использовать данные о повреждении растений конкретным соединением в различных концентрациях для вычисления значений GR20, GR50, GR80 и GR90, которые определяются, как факторы подавления роста, соответствующие эффективной дозе гербицида, необходимой для подавления роста растений (GR) на 20 процентов, 50 процентов, 80 процентов и 90 процентов, соответственно. Пробит-анализ применяли к данным, зафиксированным для нескольких дозировок индивидуальных соединений, с использованием методик, разъясненных в следующих примерах. Данные для некоторых из дозировок и анализ для всех дозировок помещены в следующих таблицах.

Некоторые из протестированных соединений, примененных количеств соединений, исследованных видов растений и результатов показаны в таблицах 9-13.

Таблица 9
Активность гербицидных соединений в посадках пшеницы и ячменя
Соед. №Нанесенное кол-во (г/га)Визуальное подавление роста (%) через 21 день после нанесенияALOMYAPESVBROТELOLSSPHAMISEТVIHORVSТRZASBRSNWGALAPLAMPUSINAR717,5EEEFCDCCDECC35BDDEBCBBCDBB70ACADABBBAAAAGR10------------120,5------GR20------------231------GR50163015>140106----51233GR802511437>1402413----24311215GR9034>14059>1403921----53522736

Таблица 10
Активность гербицидных соединений в посадках пшеницы и ячменя
Соед. №Нанесенное кол-во (г/га)Визуальное подавление роста (%) через 21 день после нанесенияHORVSТRZASCIRARGALAPKCHSCLAMPUMAТCHPAPRHSASKRSINARVERPEVIOТR7817,5FGBDBDGFBAGF35EFBDACFDn/aADF70DEBDABECn/aACDGR201320--------------------GR50----212263440,413347GR80----7>140946>140>1409377>140GR90----12>14019>140>140>140428119>1408217,5FDBDDGCGBAGE35DDBBCGCGBAGD70CCBBCFBFBAGDGR2074--------------------GR50----1102891811310,02>14031GR80----10338313135>140100,5>14062GR90----3464>140>14049>140322>14090

Таблица 11
Активность гербицидных соединений в посадках пшеницы и ячменя
Соед. №Нанесенное кол-во (г/га)Визуальное подавление роста (%) через 21 день после нанесенияALOMYAPESVLOLSSSEТVIKCHSCHORVSTRZAS817,5GGGDEFF35FBGCDDD70EBFCDDDGR20----------76GR50>7022>701121----GR80>7036>7072>70----GR90>7046>70>70>70----917,5CGGEGDD35BDGCGBC70BCEBGBCGR20----------34GR5013307021>70----GR802661>7046>70----GR903889>7071>70----1035FGGDGDD70EEFCDCB

140BBDACBBGR20----------114GR505265933678----GR80109106>14063117----GR90>140138>14085>140----4235BDECECC70ACDBEBC140ABDADBBGR20----------0,500,20GR501122441054----GR802581>14046>140----GR9040>140>140>140>140----4635DGGGBED70AEEFADC140ADDDABBGR20----------810GR501888911061----GR8035>140>140>1407----GR9049>140>140>14017----

Таблица 12
Активность гербицидных соединений в посадках пшеницы и ячменя
Соед. №Нанесенное кол-во (г/га)Визуальное подавление роста (%) через 21 день после нанесенияALOMYAPESVLOLSSSEТVIMATCHVERPEHORVSTRZAS1117,5FFEEGEDC35EDDCFDDB70DBCBEBBBGR20------------30,12GR50412531186517----GR80>70526237>7041----GR90>70>70>7053>7065----1317,5EGGDGCDD35DEGCFBCC70ADGADABCGR20------------22GR5020>70>704583----GR8040>70>7020>7016----GR9057>70>7045>7037----

Таблица 13
Активность гербицидных соединений в посадках пшеницы и ячменя
Соед. №Нанесенное кол-во (г/га)Визуальное подавление роста (%) через 21 день после нанесенияALOMYAVEFALOLSSPHAMIHORVSTRZAS3217,5BEGGED35ADFFDD70ADDEDCGR20--------31GR505315465----GR8012>70>70>70----GR9018>70>70>70----ALOMY: лисохвост мышехвостниковидный (Alopecurus myosuroides);
APESV: метлица обыкновенная (Apera spica-venti);
BROTE: костер кровельный (Bromus tectorum);
HORVS: ячмень, яровой (Hordeum vulgare);
TRZAS: пшеница, яровая (Triticum aestivum);
LOLSS: плевелы, в т.ч. плевел многоцветковый (Lolium multiflorum), плевел жесткий (Lolium rigidum), плевел однолетний (Lolium multiflorum подвид Gaudini);
PHAMI: канареечник малый (Phalaris minor);

SETVI: щетинник зеленый (Setaria viridis);
KCHSC: кохия веничная (Kochia scoparia);
LAMPU: яснотка пурпурная (Lamium purpereum);
GALAP: подмаренник цепкий (Galium aparine);
SINAR: дикая (полевая) горчица (Sinapis arvensis);
VERPE: вероника персидская (Veronica persica);
BRSNW: масличный рапс, озимый; канола, озимая (Brassica napus);
PAPRH: мак самосейка (Papaver rhoeas);
SASKR: солянка сорная (Salsola iberica)
CIRAR: бодяк полевой (Cirsium arvense);
VIOTR: фиалка трехцветная (Viola tricolor);
AVEFA: овес пустой или овсюг (Avena fatua);
MATCH: ромашка аптечная (Matricaria recutita);
g ai/ha: граммы действующего вещества на гектар;
n/t: не тестировалось;
GR20: подавление роста растений на 20%;
GR50: подавление роста растений на 50%;
GR80: подавление роста растений на 80%;
GR90: подавление роста растений на 90%.

Пример E: оценка послевсходовой гербицидной активности в посадках риса, посеянного семенами

Семена или орешки желаемых тестируемых видов растений высаживали в почвенную основу, приготовленную смешиванием суглинистой почвы (43 процента пылевой фракции, 19 процентов глины и 38 процентов песка с pH примерно 8,1 и содержанием органического вещества примерно 1,5 процента) и речного песка в соотношении 80 к 20. Полученную почвенную основу помещали в пластмассовые горшки с площадью поверхности 139,7 см2. Если это необходимо для гарантии хорошего прорастания и получения здоровых растений, применяли обработку фунгицидами и/или другими химическими или физическими средствами. Растения выращивали в течение 10-17 дней (д) в теплице с продолжительностью светового дня примерно 14 ч, в которой поддерживалась температура примерно 29°C в течение светового дня и 26°C в течение ночи. Регулярно вносили питательные вещества и воду, и дополнительное освещение при необходимости обеспечивалось потолочными металло-галогеновыми лампами мощностью 1000 Ватт. Растения использовались для тестирования, если они достигали стадии второго или третьего настоящего листа.

Взвешенное количество каждого тестируемого соединения, которое определяли по наибольшей концентрации, которую предполагалось протестировать, помещали в 25 мл стеклянный сосуд и растворяли в необходимом объеме 97:3 объем/объем смеси ацетона и ДМСО, получая 12Х концентрированные растворы. Если тестируемое соединение с трудом подвергалось растворению, смесь нагревали и/или подвергали воздействию ультразвука. Приготовленные концентрированные растворы добавляли к растворам для опрыскивания, так чтобы конечные концентрации ацетона и ДМСО составляли 16,2% и 0,5% соответственно. Растворы для опрыскивания разбавляли до необходимых конечных концентраций добавлением водной смеси, содержащей 1,5% (объем/объем) маслянистого концентрата Adri-dex. Окончательный состав раствора для опрыскивания содержал 1,25% (объем/объем) маслянистого концентрата Adri-dex. Требуемые количества соединений выбирали на основании того, что применяемый объем 12 мл соответствовал норме расхода 187 литров на гектар (л/га). Составы соединений наносили на растительный материал с помощью распылителя Mandel с верхней головкой, снабженной насадкой 8002E, калиброванной для доставки 187 л/га на площади нанесения 0,503 кв. метра при высоте распыления 18 дюймов (43 см) над средней высотой верхушек растений. Контрольные растения аналогичным образом опрыскивали растворителем, не содержащим действующего вещества.

Обработанные препаратами и контрольные растения помещали в теплицу, как описано выше, и осуществляли подпочвенное орошение растений, чтобы предотвратить вымывание тестируемых соединений. Через 20-22 дня визуально определяли состояние тестовых растений по сравнению с необработанными растениями и оценивали по шкале от 0 до 100 процентов, где значение 0 соответствовало отсутствию повреждений, и значение 100 соответствовало полному уничтожению растений, причем соответствие между определенными значениями и символами, использованными для представления данных, показано в таблице 4.

Применяя хорошо известный пробит-анализ, который описан J.Berkson в Journal of the American Statistical Society, 48, 565 (1953) и D.Finney в "Probit Analysis" Cambridge University Press (1952), можно использовать данные о повреждении растений конкретным соединением в различных концентрациях для вычисления значений GR20, GR50, GR80 и GR90, которые определяются, как факторы подавления роста, соответствующие эффективной дозе гербицида, необходимой для подавления роста растений (GR) на 20 процентов, 50 процентов, 80 процентов и 90 процентов, соответственно. Пробит-анализ применяли к данным, зафиксированным для нескольких дозировок индивидуальных соединений, с использованием методик, разъясненных в следующих примерах. Данные для некоторых из дозировок и анализ для всех дозировок помещены в помещенных ниже таблицах.

Некоторые из протестированных соединений, примененных количеств соединений, исследованных видов растений и результатов показаны в таблице 14.

Таблица 14
Активность гербицидных соединений в посадках риса, посеянного семенами
Соед. №Нанесенное кол-во (г/га)Визуальное подавление роста (%) через 21 день после нанесенияBRAPPCYPDICYPESCYPIRDIGSAECHCGECHCOLEFCHORYSJORYSKSCPJUSEBEX1017,5BAAAAABDGGAA35AAAABAAADEAA70AAAAAAAACCAAGR20----------------1420----GR5074<186110612----0,00023GR80168<18108141420----0,02078GR902410<181321162127----0,268131117,5BABAAAAGFEAA35AAAAABAACDAA70AAAAAAAABCAAGR20----------------87----GR5073<18517423----0,043GR80167<187415934----17GR902510<1879231441----2103717,5DACBBBBGGGAC35BABEABAGGGAB70AAAAAAAEFGAAGR20----------------5670----GR5030,04<1860,070,330,001116----0,00012

GR80151<1823240,2288----0,000115GR90392<18468173464----0,0001476617,5BAAACAAGDFAD35AAAABAAGBDAA70AAAABAAFBBAAGR20----------------211----GR5020,420,00019232105----0,00018GR80730,0001152176227----0,000119GR901660,000119771211339----0,0001282517,5AAABFAAGBBAG35AAAADAAGABAA70AAAADAAGAAAAGR20----------------13----GR5040,040,042270,0252175----0,000119GR809115253014463----0,000126GR90132192700036770----0,0001301317,5AAAAAAADEGA9535AAAAABAABEA10070AAAAAAAAADA100GR20----------------615----GR5030,040,040,040,050,01114----0,000111GR80510011325----0,000116GR907200610633----0,0001204117,5AAAAABABBDAA35AAAAAAAAACAA70AAAAAAAAABAA

GR20----------------12----GR500,340,00010,00010,0010,00180,00036----0,00014GR80260,00010,00010,1310,00180,041513----0,00019GR90670,00010,000120,0018120----0,0001134217,5AAAAAAAABDAA35AAAAAAAAACAA70AAAAAAAAACAAGR20----------------11----GR500,0040,0040,430,0040,00010,000154----0,00012GR800,20,2250,1580,00010,020708----0,00015GR90115610,00010,26813----0,00019BRAPP: брахиария плосколистная (Brachiaria Platyphylla);
CYPDI: сыть разнородная (Cyperus difformis);
CYPES: сыть съедобную (Cyperus esculentus);
CYPIR: сыть ирия (Cyperus iria);
DIGSA: росичка кроваво-красная (Digitaria sanguinalis);
ECHCG: ежовник обыкновенный, петушье просо (Echinochloa crus-galli);
ECHCO: ежовник крестьянский (Echinochloa colonum);
LEFCH: лептохлоя китайская (Leptochloa Chinesis);
SCPJU: японский камыш (Schoenoplectus junicoides);
SEBEX: сесбания рослая (Sesbania exaltata);
ORYSK: рис (Oryza sativa);
ORYSJ: рис (Oryza sativa);
g ai/ha: граммы действующего вещества на гектар.

Реферат

Изобретение относится к 4-амино-6-(гетероциклил)пиколинатам и их производным, а также к 6-амино-2-(гетероциклил)пиримидин-4-карбоксилатам и их производным формулы (I), в которой X означает N или CY, где Y представляет собой водород, галоген или C-Cалкил; Rпредставляет собой OR, где Rпредставляет собой водород или C-Cалкил; Rозначает галоген, С-Салкенил и С-Салкокси; Rи Rнезависимо представляют собой водород; A представляет собой одну из групп Ar4-Ar12 и Ar15-Ar18; Rпредставляет собой водород, галоген, C-Cалкил или C-Cалкокси; Rпредставляет собой водород, галоген, C-Cалкил или C-Cалкокси; Rозначает водород или галоген; Rпредставляет собой водород или галоген; Rи Rнезависимо представляют собой водород, галоген или C-Cалкил; Rи Rнезависимо представляют собой водород или галоген; R, R, Rи Rнезависимо представляют собой водород; Rпредставляет собой C-Cалкил; и коэффициент m, если он присутствует в формуле, означает 0; или к N-оксиду или приемлемой для сельскохозяйственного применения соли указанного соединения. Технический результат – получены новые соединения, которые могут найти свое применение в сельском хозяйстве для борьбы с нежелательной растительностью. 2 н. и 11 з.п. ф-лы, 14 табл., 13 пр.

Формула

1. Соединение формулы (I)
где
X означает N или CY, где Y представляет собой водород, галоген или C1-C3 алкил;
R1 представляет собой OR1', где R1' представляет собой водород или C1-C8 алкил;
R2 означает галоген, С24алкенил и С14алкокси;
R3 и R4 независимо представляют собой водород;
A представляет собой одну из групп Ar4-Ar12 и Ar15-Ar18:
R5 представляет собой водород, галоген, C1-C4 алкил или C1-C3 алкокси;
R6 представляет собой водород, галоген, C1-C4 алкил или C1-C3 алкокси;
R6' означает водород или галоген;
R6" представляет собой водород или галоген;
R7 и R7' независимо представляют собой водород, галоген или C1-C4 алкил;
R8 и R8' независимо представляют собой водород или галоген;
R9, R9', R9" и R9"' независимо представляют собой водород;
R10 представляет собой C1-C6 алкил; и
коэффициент m, если он присутствует в формуле, означает 0; и
или N-оксид или приемлемая для сельскохозяйственного применения соль указанного соединения; при условии, что A не является
.
2. Соединение по п.1, где Ar представляет собой Ar4, Ar5, Ar6, Ar7, Ar8, Ar15, Ar16, Ar17 или Ar18.
3. Соединение по п.1, где R2 означает Cl, метокси, винил или 1-пропенил.
4. Соединение по любому из пп.1-3, где X означает N, CH или CF.
5. Соединение по любому из пп.1-4, где R5 представляет собой водород или галоген.
6. Соединение по п.5, где R5 представляет собой водород или F.
7. Соединение по любому из пп.1-6, где R6 представляет собой водород или F.
8. Соединение по любому из пп.1-7, где R6' представляет собой водород.
9. Соединение по любому из пп.1-8, где:
X означает N, CH или CF;
Ar представляет собой Ar7, Ar9, Ar10, Ar15 или Ar16;
R5 означает водород или F;
R6 означает водород или F;
R6' означает водород; и
R7, R7', R8 и R8', если эти заместители имеются у соответствующей группы Ar, независимо представляют собой водород или фтор.
10. Соединение по любому из пп. 1-9, где:
R2 означает хлор; и
X означает N, CH или CF.
11. Соединение по любому из пп. 1-9, где:
R2 означает метокси; и
X означает N, CH или CF.
12. Соединение по любому из пп. 1-9, где:
R2 означает винил или 1-пропенил; и
X означает N, CH или CF.
13. Способ борьбы с нежелательной растительностью, включающий нанесение гербицидно-эффективного количества соединения по любому из пп.1-12.

Авторы

Патентообладатели

Заявители

СПК: A01N25/08 A01N41/10 A01N43/40 A01N43/54 A01N43/80 A01N43/90 C07D213/06 C07D213/79 C07D239/24 C07D401/04 C07D403/04 C07D405/04 C07D405/10 C07D409/04 C07D411/04

МПК: A01P13/00 A01N43/40 A01N43/54

Публикация: 2018-11-16

Дата подачи заявки: 2014-03-12

0
0
0
0
Невозможно загрузить содержимое всплывающей подсказки.
Поиск по товарам